R&D UPDATES

HUTCHMED

October 31, 2025

HKEX: 13, Nasdaq / AIM:HCM

Safe harbor statement & disclaimer

The performance and results of operations of the HUTCHMED Group contained within this presentation are historical in nature, and past performance is no guarantee of future results.

The performance and results of operations of the Group contained within this presentation are historical in nature, and rates, and geopolitical relations, sanctions and tariffs. For further discussion of these and other risks, see HUTCHMED's past performance is no guarantee of future results of the Group. This presentation contains forward-looking statements within the meaning of the "safe harbor" provisions of the US Private Securities Litigation Reform Act of 1995. These forward-looking statements can be identified by words like "will," "expects," "anticipates," "future," "intends," "plans," "believes," "estimates," "pipeline," "could," "potential," "first-in-class," "best-in-class," "designed to," "objective," "guidance," "pursue," or similar terms, or by express or implied discussions regarding potential drug candidates, potential indications for drug candidates or by discussions of strategy, plans, expectations or intentions. You should not place undue reliance on these statements. Such forward-looking statements are based on the current beliefs and expectations of management regarding future events and are subject to significant known and unknown risks and uncertainties. Should one or more of these risks or uncertainties materialize, or should underlying assumptions prove incorrect, actual results may vary materially from those set forth in the forward-looking statements. There can be no guarantee that any of our drug candidates will be approved for sale in any market, that any approvals which have been obtained will continue to remain valid and effective in the future, or that the sales of products marketed or otherwise commercialized by HUTCHMED and/or its collaboration partners (collectively, "HUTCHMED's Products") will achieve any particular revenue or net income levels. In particular, management's expectations could be affected by, among other things: unexpected regulatory actions or delays or government regulation generally; the uncertainties inherent in research and development, including the inability to meet our key study assumptions regarding enrollment rates. timing and availability of subjects meeting a study's inclusion and exclusion criteria and funding requirements, changes to clinical protocols, unexpected adverse events or safety, quality or manufacturing issues; the delay or inability of a drug candidate to meet the primary or secondary endpoint of a study; the delay or inability of a drug candidate to obtain regulatory approval in different jurisdictions or the utilization, market acceptance and commercial success of HUTCHMED's Products after obtaining regulatory approval; discovery, development and/or commercialization of competing products and drug candidates that may be superior to, or more cost effective than, HUTCHMED's Products and drug candidates; the impact of studies (whether conducted by HUTCHMED or others and whether mandated or voluntary) or recommendations and guidelines from governmental authorities and other third parties on the commercial success of HUTCHMED's Products and drug candidates in development; the ability of HUTCHMED to manufacture and manage supply chains, including various third party services, for multiple products and drug candidates: the availability and extent of reimbursement of HUTCHMED's Products from third-party payers, including All references to "HUTCHMED" as used throughout this presentation refer to HUTCHMED (China) Limited and its private payer healthcare and insurance programs and government insurance programs; the costs of developing, producing and selling HUTCHMED's Products; the ability to obtain additional funding when needed; the ability to obtain and maintain protection of intellectual property for HUTCHMED's Products and drug candidates; the ability of HUTCHMED to meet any of its financial projections or guidance and changes to the assumptions underlying those projections or guidance; the successful disposition of its non-core business; global trends toward health care cost containment, including ongoing pricing pressures; uncertainties regarding actual or potential legal proceedings. including, among others, actual or potential product liability litigation, litigation and investigations regarding sales and marketing practices, intellectual property disputes, and government investigations generally; and general economic and industry conditions, including uncertainties regarding the effects of the persistently weak economic and financial environment in many countries, uncertainties regarding future global exchange rates, uncertainties in global interest

filings with the US Securities and Exchange Commission, on AIM and on HKEX. HUTCHMED is providing the information in this announcement as of this date and does not undertake any obligation to update any forward-looking statements as a result of new information, future events or otherwise This presentation is intended for investors only. Information concerning pharmaceuticals (including compounds under development) contained within this material is not intended as advertising or medical advice.

Nothing in this presentation or in any accompanying management discussion of this presentation constitutes, nor is it intended to constitute or form any part of: (i) an invitation or inducement to engage in any investment activity, whether in the United States, the United Kingdom, Hong Kong or in any other jurisdiction; (ii) any recommendation or advice in respect of any securities of HUTCHMED; or (iii) any offer or an invitation to induce an offer by any person for the sale, purchase or subscription of any securities of HUTCHMED. Information concerning pharmaceuticals (including compounds under development) contained within this material is not intended as advertising or medical advice.

In addition, this presentation contains statistical data, third-party clinical data and estimates that HUTCHMED obtained from industry publications and reports generated by third-party market research firms, including Frost & Sullivan, IOVIA, independent market research firms, clinical data of competitors, and other publicly available data. All patient population, market size and market share estimates are based on Frost & Sullivan or QuintilesIMS/IQVIA research, unless otherwise noted. Although HUTCHMED believes that the publications, reports, surveys and third-party clinical data are reliable, HUTCHMED has not independently verified the data and cannot guarantee the accuracy or completeness of such data. You are cautioned not to give undue weight to this data. Such data involves risks and uncertainties and are subject to change based on various factors, including those discussed above.

No representation or warranty, express or implied, is made as to, and no reliance should be placed on, the fairness, accuracy, completeness or correctness of the information, or opinions contained herein. Neither HUTCHMED, nor any of HUTCHMED's advisors or representatives shall have any responsibility or liability whatsoever (for negligence or otherwise) for any loss howsoever arising from any use of this presentation or its contents or otherwise arising in connection with this presentation. The information set out herein may be subject to updating, completion, revision, verification and amendment and such information may change materially.

consolidated subsidiaries and joint ventures unless otherwise stated or indicated by context. This presentation should be read in conjunction with HUTCHMED's results for the period ended June 30, 2025 and HUTCHMED's other SEC filings and announcements published in accordance with the Rules Governing the Listing of Securities on The Stock Exchange of Hong Kong Limited copies of which are available on HUTCHMED's website (www.hutch-med.com).

Use of Non-GAAP Financial Measures - This presentation may include certain non-GAAP financial measures. Please see the section of the HUTCHMED results announcement titled "Use of Non-GAAP Financial Measures and Reconciliation" for further information relevant to the interpretation of these financial measures and reconciliations of these financial measures to the most comparable GAAP measures.

Company names and logos are trademarks of their respective holders.

Agenda

Welcome Opening

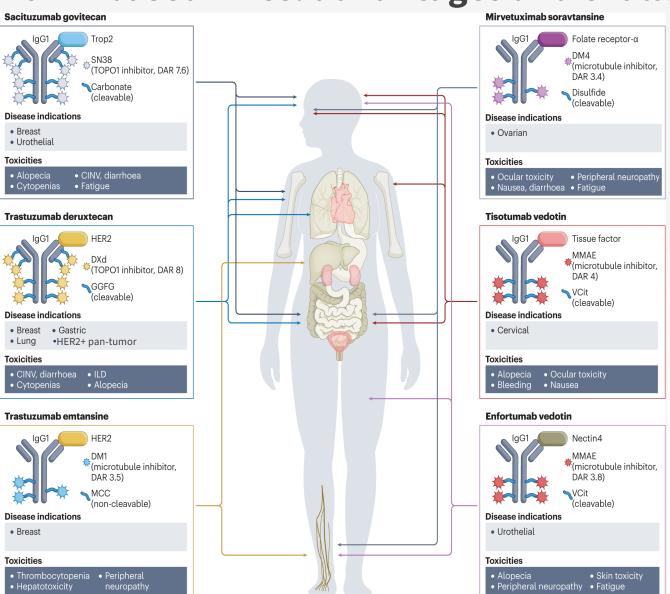
Antibody-Targeted Therapy Conjugate (ATTC) Platform

- Next-generation ATTC Platform
- Our First Candidate: HMPL-A251
- Our Preliminary Development Strategy

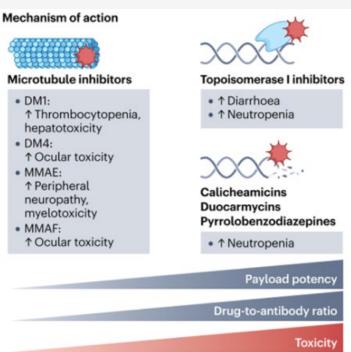
Late-Stage Pipeline Updates

Closing Remarks

Q&A Session

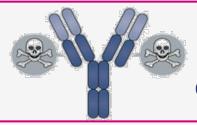


Next-generation
Antibody-Targeted Therapy Conjugate (ATTC)
Platform

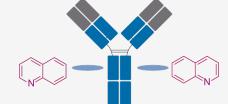

ATTC Platform Overview

Toxin-based ADCs: advantages and challenges

HUTCHMED



- Despite being designed with the rationale of expanding the therapeutic indices of conventional chemotherapies, most ADCs have a toxicity profile similar to cytotoxic payload.
- Combination of ADCs with chemotherapy presents several challenges related to overlapping toxicities.



Nat Rev Clin Oncol. 2023, 20(8): 558-576

Traditional ADCs vs. HUTCHMED ATTCs

Traditional
Antibody-Drug
Conjugates (ADC)

HUTCHMED Antibody-Targeted Therapy Conjugates (ATTC)

How it works

- Cytotoxin payload
- Target rapidly dividing cells (mostly cancer cells)

- · Target proteins required for cancer growth
- Synergistic combination effect with antibody
- Ability to combine with IO/chemo-based frontline SOC or other target therapy
- Overcome chemo resistance
- Can be dosed long term

Side effects

Antibody based toxicities

Cytotoxin-related key toxicities^[1]

- Hematological toxicity
- Hepatotoxicity
- Gastrointestinal toxicity
- Neurotoxicity, ocular toxicity
- Interstitial lung disease

Antibody based toxicities

Targeted therapy (TT) payload based

- Low on-target and off-tumor toxicity
- Low compound base toxicity such as liver, QT, etc
- Non-genotoxic, low myelotox, amenable for long term use

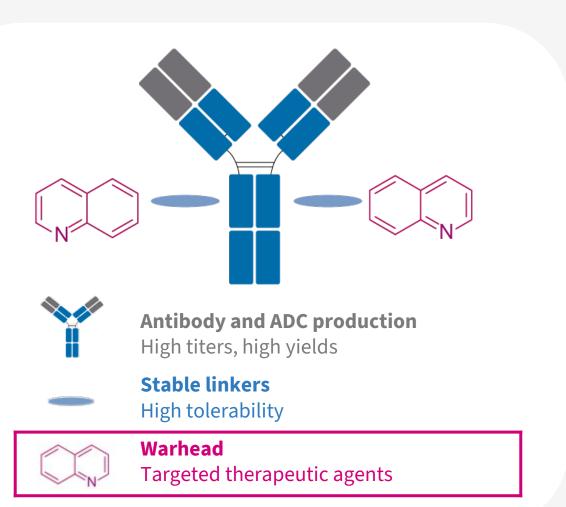
Limitation

Resistance to chemotherapy, not specific

Resistance to target therapy?

Predictive biomarker / Sensitive population

No/Not clear

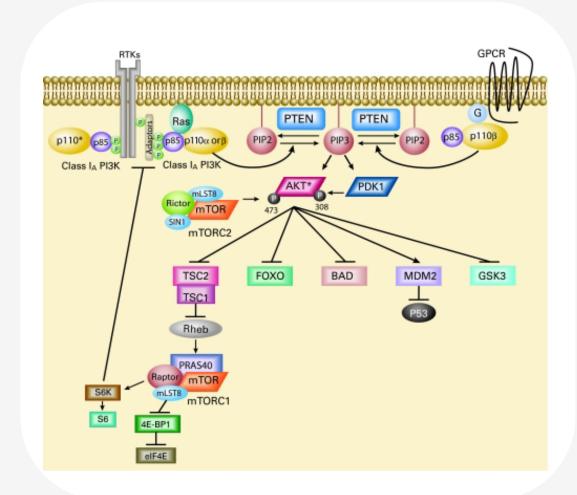

Patients with genetic drivers do worse

Clear

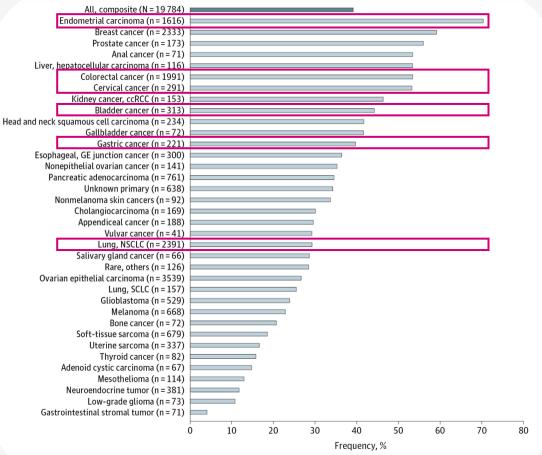
Patients with genetic drivers should benefit most

HUTCHMED ATTCs design objectives

Target specific drivers, alleviate chemo-based toxicities, enable combination with frontline chemo-based SoCs.


Key attributes of ATTCs

- Targeted therapies target genetic drivers (oncogenes)
 exist in tumor cells, not in normal cells, leading to lower
 toxicities.
- Antibody targeted therapy conjugates will lower the free targeted therapy drugs in circulation, further lowering compound or target-based toxicities, such as liver toxicities associated with oral therapies.
- Opportunity to further enhance anti-tumor efficacy through combination effect between the antibody and the targeted therapy.
- Ability to combine with chemo-based frontline SOC or monotherapy as chemo free adjuvant for long term use.

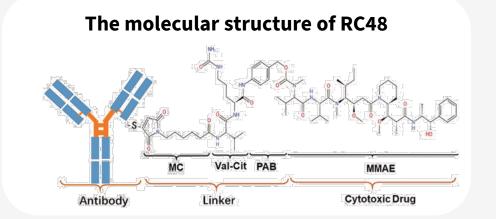

PAM Pathway

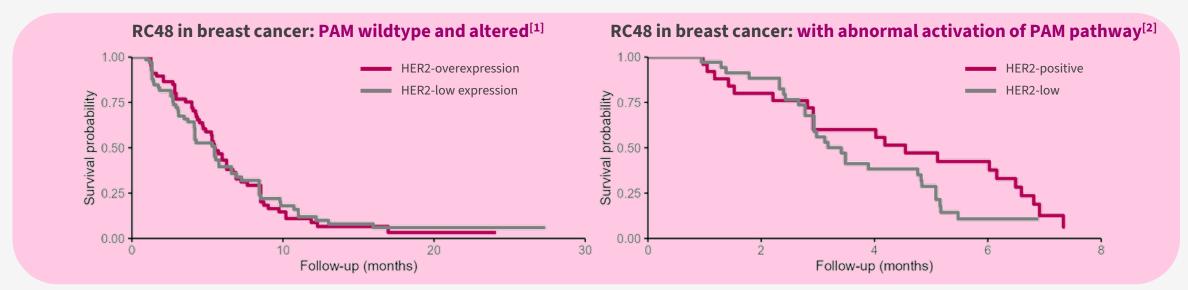
PI3K/AKT/mTOR (PAM) pathway is an attractive therapeutic target

PAM signaling pathway controls many physiological functions and cellular processes[1]

PAM pathway alteration is one of the most common events in human cancer (~50% of solid tumor)[2]

Important to block genomic driver mutations to improve clinical benefit (1/2)

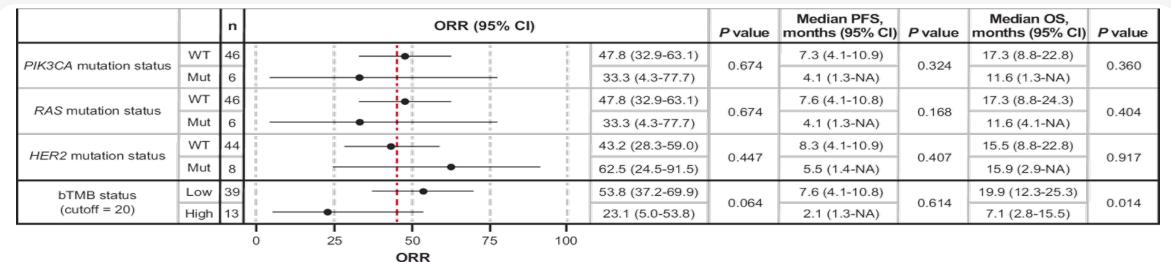

HUTCHMED

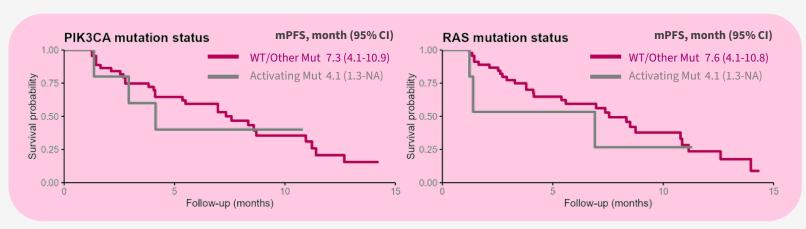

PAM-altered patient populations have a poorer prognosis than non-altered, regardless of their HER2 expression.

Disitamab vedotin (RC48)

an HER2-directed ADC in breast cancer patients^[1,2]

	HER2 positive			HER2 low		
	ITT	PAM-altered		ITT	PAM-altered	
ORR	42.9%	34.6%	ORR	33.3%	34.3%	
PFS	5.5m	4.5m	PFS	5.1m	3.4m	

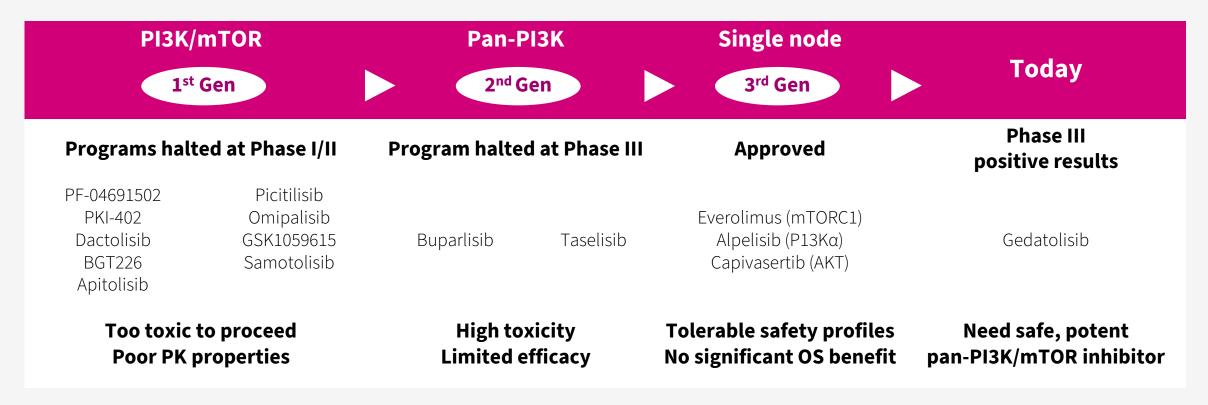



Important to block genomic driver mutations to improve clinical benefit (2/2)

HUTCHMED

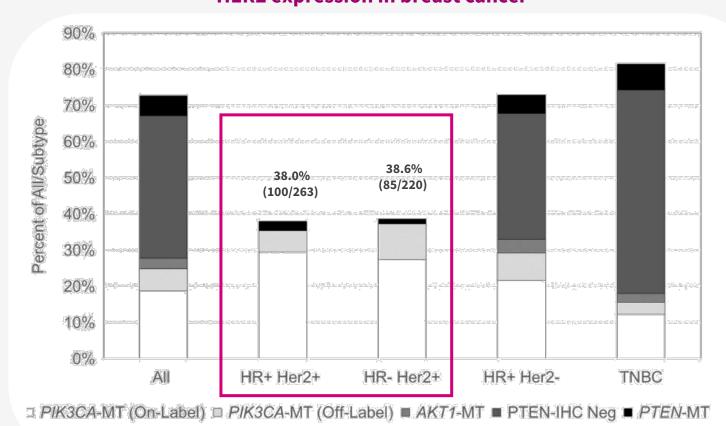
12

DESTINY-CRC01 flags PIK3CA or RAS-mutant mCRC as a high-need, targetable segment with attractive commercial potential.



- In the T-DXd treated mCRC from the DESTINY-CRC01 study, ORR, PFS and OS tend to be **lower** in the PIK3CA mutant or RAS mutant population than in the wildtype group.
- This may present an opportunity for targeted agent payloads.

S. Siena et al, Nat Commun 2024 15 10213; Adapted charts.


PAM pathway targeted drugs in clinic

- On-target and severe toxicities by PI3K/mTOR inhibition prevent sufficient dose to achieve necessary target inhibition.
- Feedforward and feedback loops between PI3K isoforms, AKT, and mTOR cross-activate uninhibited sub-units, limiting clinical benefit of single node inhibitor.
- Need to increase the delivery of the PAM pathway inhibitor into tumor cells specifically to maximize their benefit ATTC strategy.

Targeting PI3K/AKT/mTOR (PAM) pathway alteration: a promising approach for breast cancer

High frequent co-occurrence of PAM pathway alterations with HER2 expression in breast cancer^[1]

Gedatolisib(under development PI3K and mTOR inhibitor)

2L HR+/ HER2-/ PIK3CA wild-type breast cancer phase III study ^[2]							
	Gedatolisib + palbociclib + fulvestrant	Gedatolisib + fulvestrant	fulvestrant				
PFS (mo)	9.3	7.4	2.0				
TRAE: Stomatitis	69%	57%	0%				

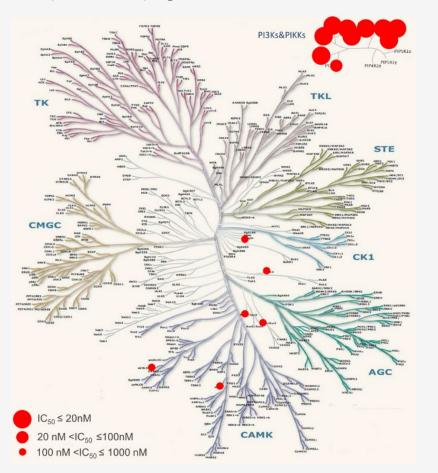
3L HER2+ breast cancer phase II study^[3]

Gedatolisib + trastuzumab biosimilar

ORR: 43%

Adverse events: stomatitis (91%)

PAM pathway alteration: PIK3CA/AKT1/PTEN mutation, PTEN loss

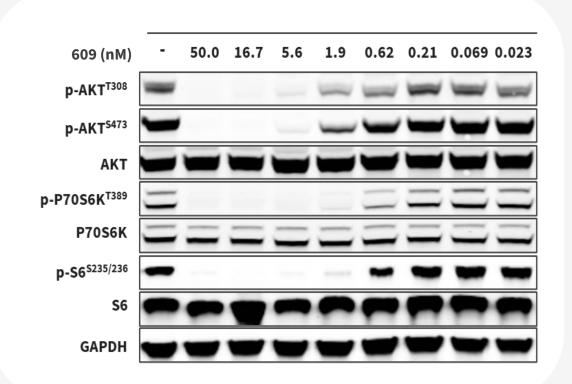

^[1] Front Oncol. 2020;10:1475

^[2] Sara Hurvitz,., et al.; Gedatolisib Plus Fulvestrant, With & Without Palbociclib, vs Fulvestrant in Patients With HR+/HER2-/PIK3CA Wild-Type Advanced Breast Cancer: First Results from VIKTORIA-1, ESMO 2025 LBA 17

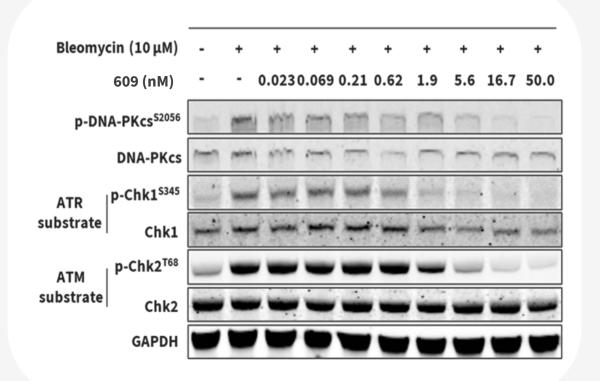
HMPL-A251: in vitro profile of payload HM5041609 ("609") (1/3) UTCHMED

A potent PI3K/PIKK inhibitor targeting PAM alterations and potentially synthetic lethality.

Enzyme activity against PI3K and PIKK kinases and selectivity

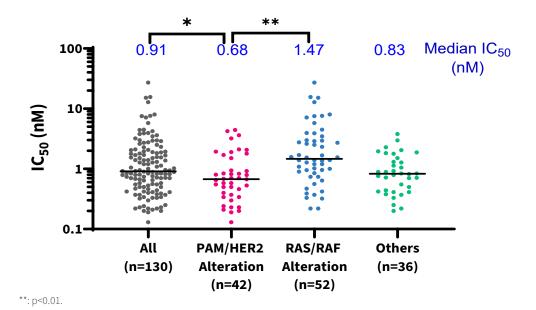


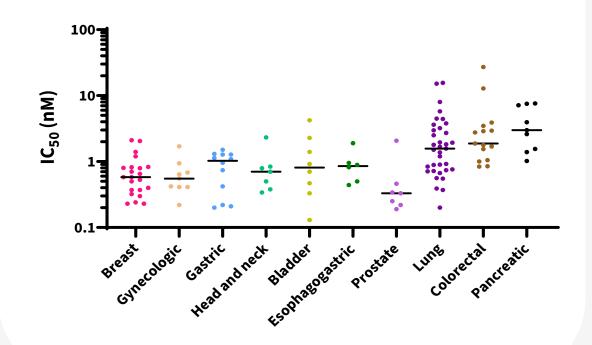
Kinases		Enzyme activity (IC ₅₀ , nM)					
		609*	Gedatolisib* (PF-05212384)	Dactolisib ^[1] (NVP-BEZ235)	Buparlisib ^[5] (NVP-BKM120)		
Class I PI3K kinases	PI3Kα	3	10	4	52		
	PI3Kα (H1047R)	1	/	4.6	58		
	ΡΙ3Κα (Ε545Κ)	0.5	/	5.7	99		
	ΡΙ3Κα (Ε542Κ)	0.8	/	/	/		
	РІЗКβ	7	23	75	166		
	РΙЗКγ	11	145	5	262		
	ΡΙ3Κδ	0.7	133	7	116		
PIKK kinases	mTOR	3	20	20.7	4,600		
	ATM	1	>1000	100 ^[2]	/		
	ATR	13	>1000	21 (in cell) ^[3]	/		
	DNA-PK	0.4	97	1.7 ^[4]	>5,000		


HMPL-A251: in vitro profile of payload HM5041609 ("609") (2/3) UTCHMED

A highly potent and selective inhibitor of PI3K & PIKK kinases that suppresses the PI3K and PIKK pathways.

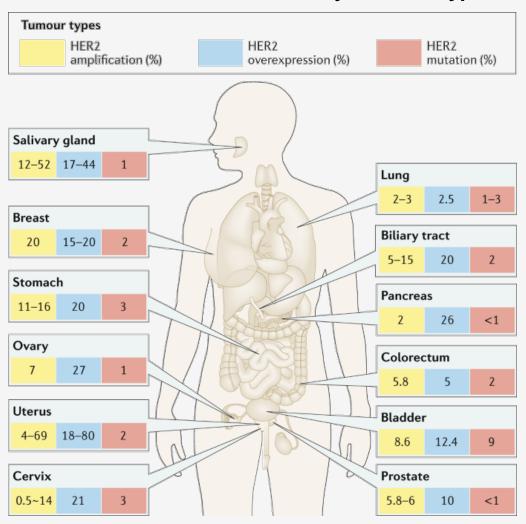
Inhibition of PAM pathways in HCC1954 cells (breast cancer; HER2+; PIK3CA^{1047R})

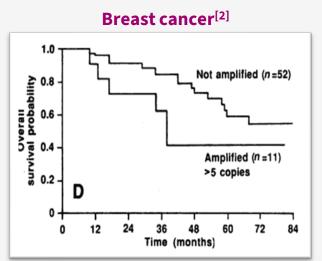

Inhibition of PIKK pathways in HCC1954 cells (breast cancer; HER2+; PIK3CA^{1047R})

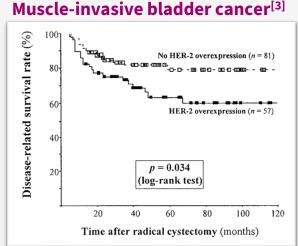

HMPL-A251: in vitro profile of payload HM5041609 ("609") (3/3) UTCHMED

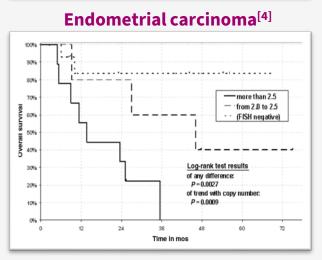
A highly potent and selective inhibitor of PI3K & PIKK kinases with robust anti-tumor activity against a broad panel of tumor cell lines.

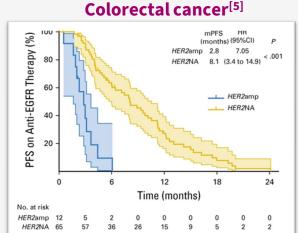
Cell growth inhibition of 609 by genotypes


Cell growth inhibition of 609 by tumor types

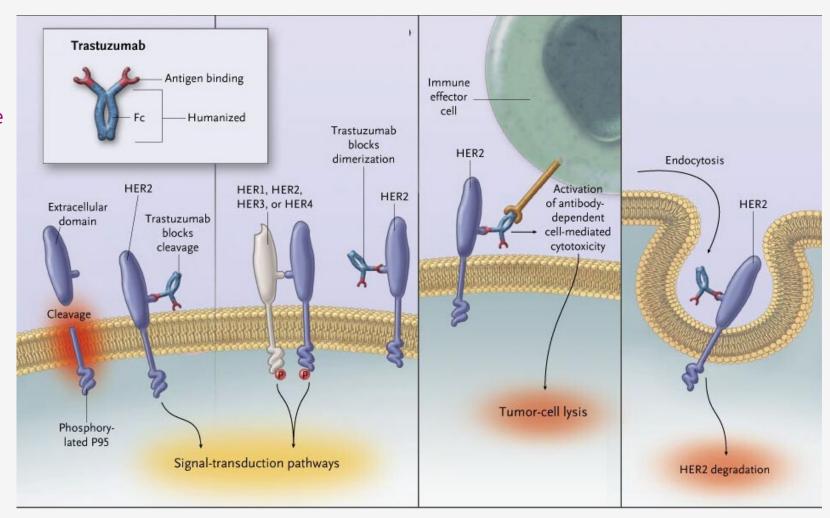

Anti-HER2 Antibody


HER2 alterations and poor prognosis in cancer


HER2 alterations found in a variety of cancer types^[1]



HER2 amplification/overexpression confers worse prognosis



Anti-HER2 antibody: mechanism of action

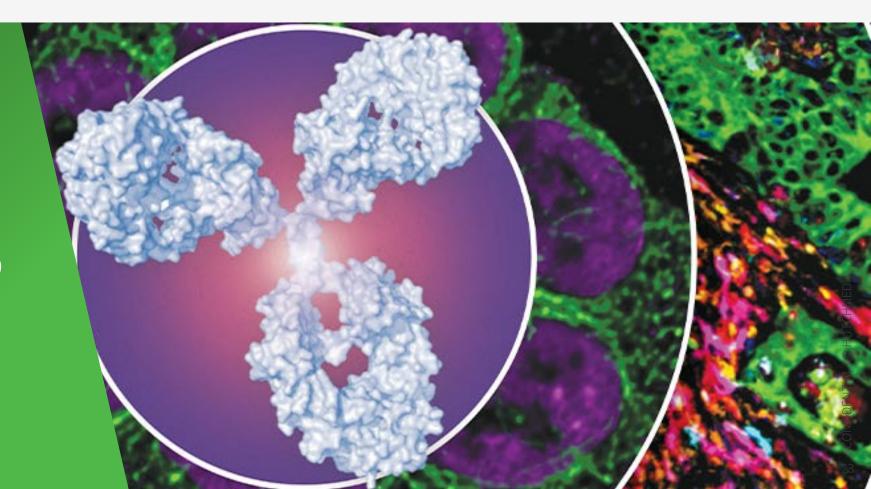
- Anti –HER2 antibody works through multiple mechanisms to inhibit tumor growth, including:
 - Inhibit extracellular domain cleavage and prevent the formation of very active form of HER2, p95HER2;
 - Block dimerization and reduce signaling transduction;
 - o Induce antibody-dependent cellmediated cytotoxicity;
 - Down-regulate receptor through endocytosis.

20 N Engl J Med. 2007 Jul 5;357(1):39-51

Summary

- HER2 is a well-established therapeutic target and a good tumor-associated antigen, which is overexpressed in a variety of solid tumors.
- PAM pathway is one of the main downstream signaling pathway of HER2.
- PAM pathway alteration confers resistance to trastuzumab-based therapy.
- PAM pathway inhibition synergizes with HER2 antibody to enhance the anti-tumor efficacy.
- PAMi-based HER2 ADC is expected to enhance the efficacy via the synergy between trastuzumab and PAMi, and improve the safety by specifically deliver PAMi into HER2-positive tumor cells.

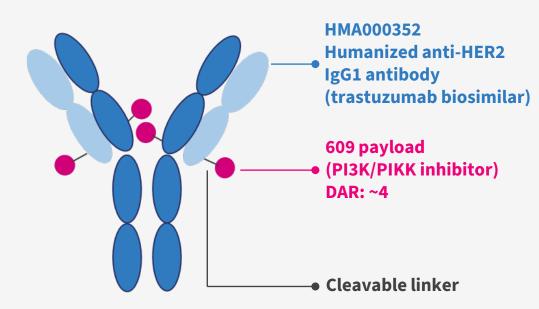
Our First ATTC Candidate: HMPL-A251


DISCOVERY OF HMPL-A251, A FIRST-IN-CLASS HER2-DIRECTED ANTIBODY-TARGETED THERAPY CONJUGATE (ATTC) WITH A NOVEL PI3K/PIKK INHIBITOR PAYLOAD

Jia Hu, Junqing Liang, Yan Xu, Haibin Yang, Peihua Liu, Yue Liu, Min Cheng, Nelson Ng, Jiahuan Zhu, Fangfang Mao, Xuelei Ge, Wei Zhang, Juntao Yu, Qihang Zhang, Shaohui Shen, Pan Wang, Leilei Wu, Xiaoyan Xu, Na Yang, Yu Cai, Jian Wang, Weihan Zhang, Yongxin Ren, Guangxiu Dai, Michael Shi & Weiguo Su

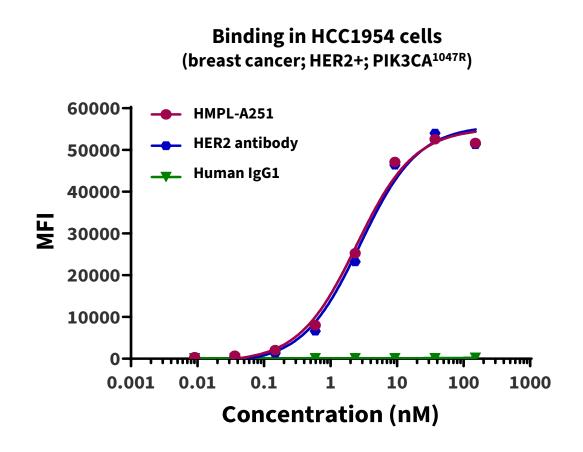
HUTCHMED

AACR-NCI-EORTC
INTERNATIONAL
CONFERENCE ON
MOLECULAR TARGETS AND
CANCER THERAPEUTICS


October 22-26, 2025 Hynes Convention Center Boston, Massachusetts, USA

Introduction

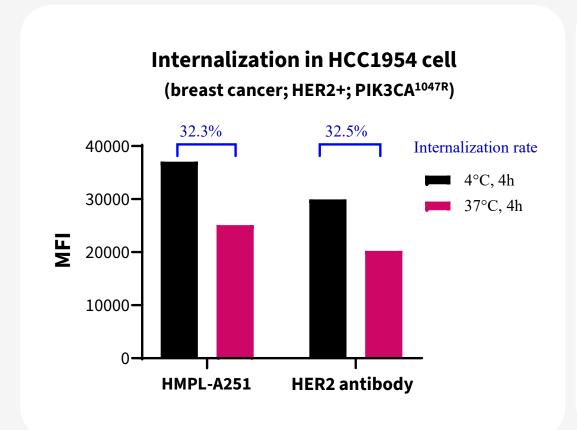
Rationale for a PI3K/PIKK inhibitor conjugated to a HER2-targeted antibody, HMPL-A251.

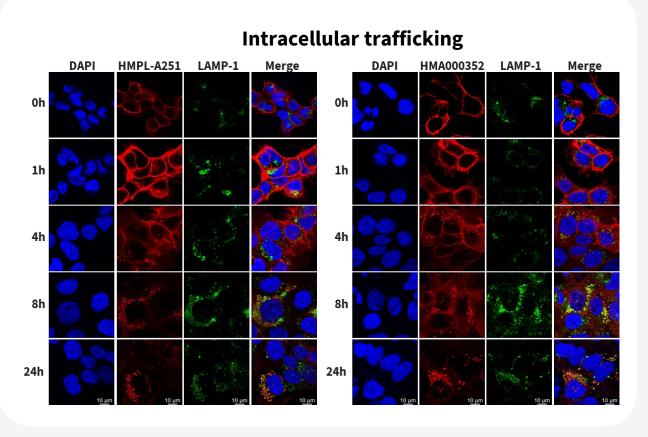

- Aberrant activation of PI3K-AKT-mTOR pathway (PAM) is associated with poor prognosis and resistance to anti-HER2 therapies^[1-2].
- Despite the synergistic effects of dual HER2 and PAM inhibition, systemic toxicity associated with PAM inhibitors limits their clinical application^[3], providing the rationale for developing HMPL-A251.

- HER2 overexpression are found in a variety of solid tumors^[4]
- HER2 overexpression are associated with poor prognosis^[5-7], increased risk of disease recurrence^[8], and resistance to anti-cancer treatment^[9]
- Highly potent against PI3K and PIKK kinases
- Synergizes with anti-HER2 antibody to improve efficacy
- PIKK inhibition provides potential for combination with chemotherapy
- Bystander effect to kill antigen negative tumor cells
- Stable in human and monkey plasma
- Cleaved by cathepsin B, a protease highly expressed in cancer cells

Binding of HMPL-A251

HMPL-A251 displayed high binding affinity to HER2-positive breast cancer cell, comparable to the naked antibody.

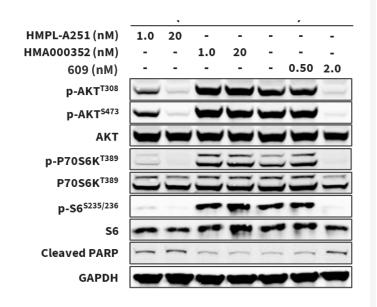



25

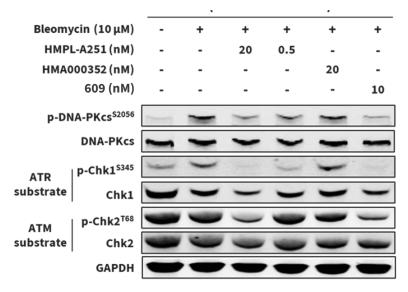
Internalization of HMPL-251

HMPL-A251 displayed efficient internalization to HER2-positive breast cancer cells, comparable to the naked antibody.

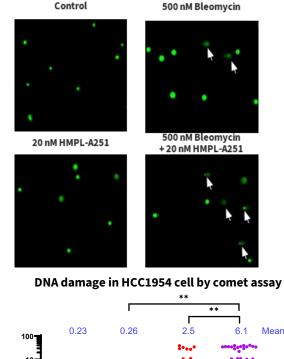
ATTC Platform

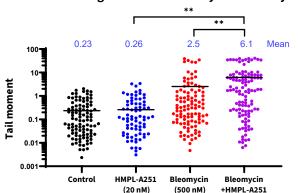


Cellular signaling pathway inhibition of HMPL-A251

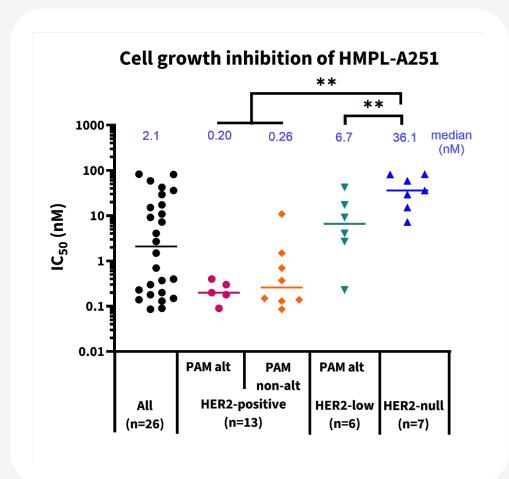

HUTCHMED

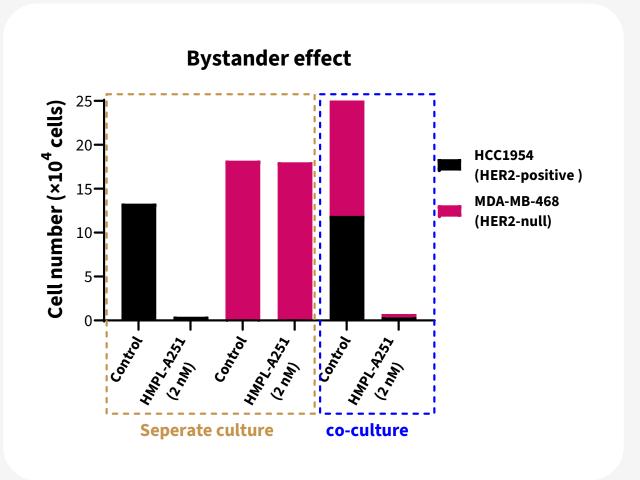
HMPL-A251 potently blocked intracellular PAM (PI3K/AKT/mTOR) and PIKK (ATM/ATR/DNA-PK) signaling pathways, leading to subsequent induction of apoptosis and DNA damage.


Inhibition of PAM pathway (breast cancer; HER2+; PIK3CA^{1047R})



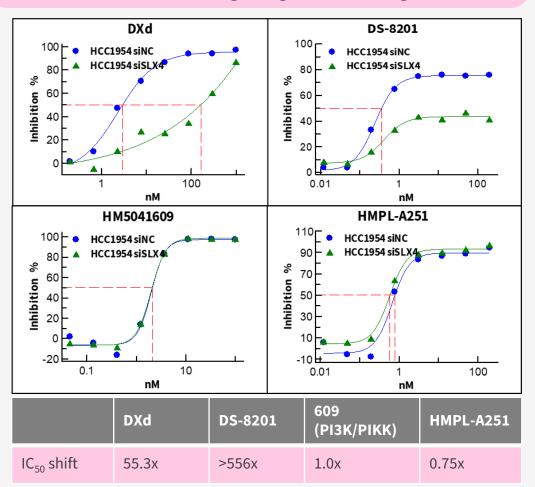
Inhibition of PIKK pathway (breast cancer; HER2+; PIK3CA^{1047R})


DNA damage evaluation

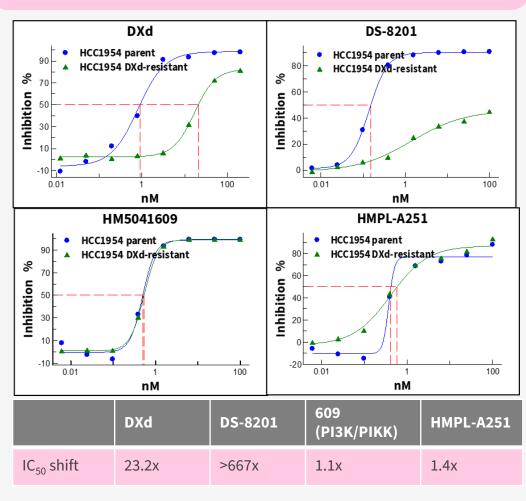


Cell growth inhibition of HMPL-A251

HMPL-A251 exhibited a HER2 expression-dependent cell growth-inhibitory activity with bystander killing effect to overcome HER2 heterogeneity.



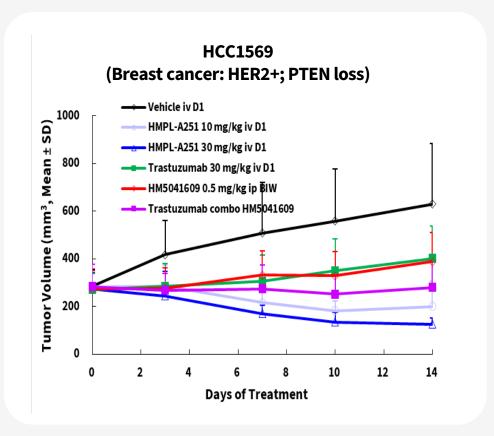
orm PAM Pathway Antibody HMPL-A251


Anti-tumor activity of HMPL-A251 in DS-8201 resistant model

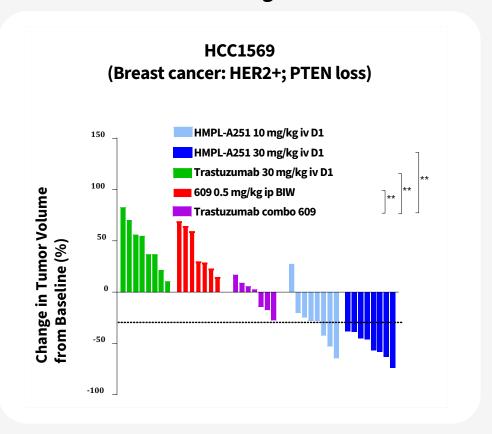
HMPL-A251 can overcome the DXd-mediated resistance to DS-8201.

Dose-response inhibition curves of HCC1954 cells transfected with non-targeting or SLX4-targeted siRNAs

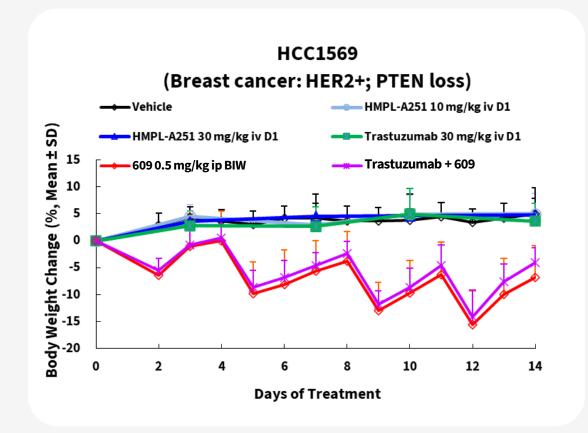
Dose-response inhibition curves of HCC1954 parent and DXd-induced resistant cells

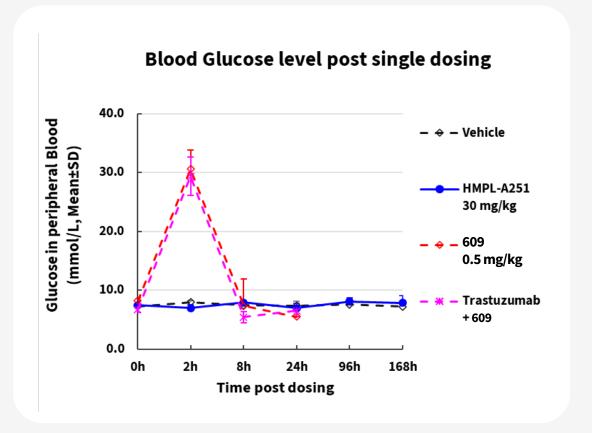


HMPL-A251 vs. antibody + payload combination (1/2)


Combination of 609 and trastuzumab produced synergistic anti-tumor.

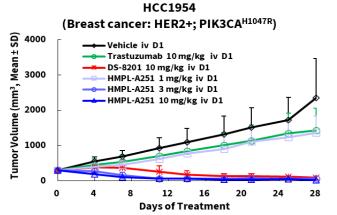
 HMPL-A251 demonstrated stronger anti-tumor activity and better tolerability than antibody and payload combination.

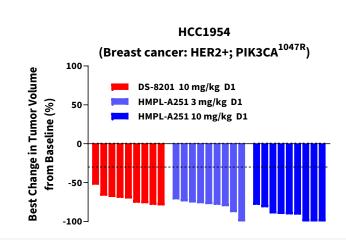

Tumor Volume



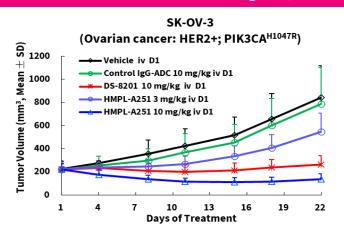
Waterfall Plot of Change in Tumor Size

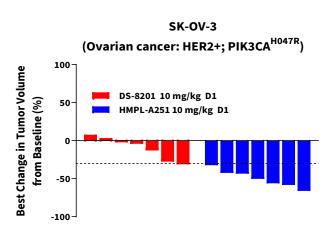
- HMPL-A251 vs. antibody + payload combination (2/2)
- Combination of 609 and trastuzumab caused safety issue as revealed by body weight loss and increase in blood glucose.
- HMPL-A251 demonstrated better tolerability than antibody and payload combination.


32

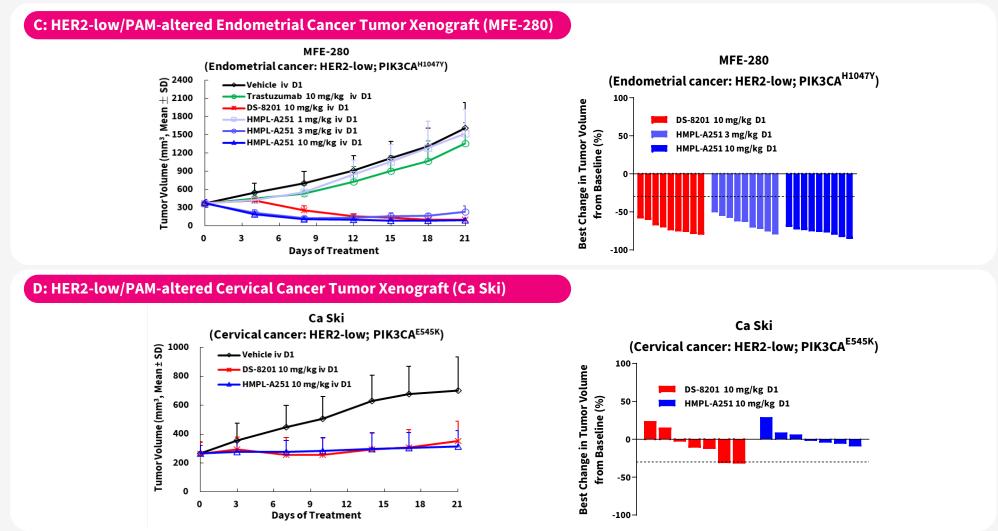

In vivo anti-tumor efficacy of HMPL-A251 (1/3)

HUTCHMED


A single intravenous dose of HMPL-A251 demonstrated robust anti-tumor activity in HER2-positive tumor models with PAM alterations, which was comparable or stronger than DS-8201 administered at an equivalent dose.



B: HER2+/PAM-altered Ovarian Cancer Tumor Xenograft (SK-OV-3)

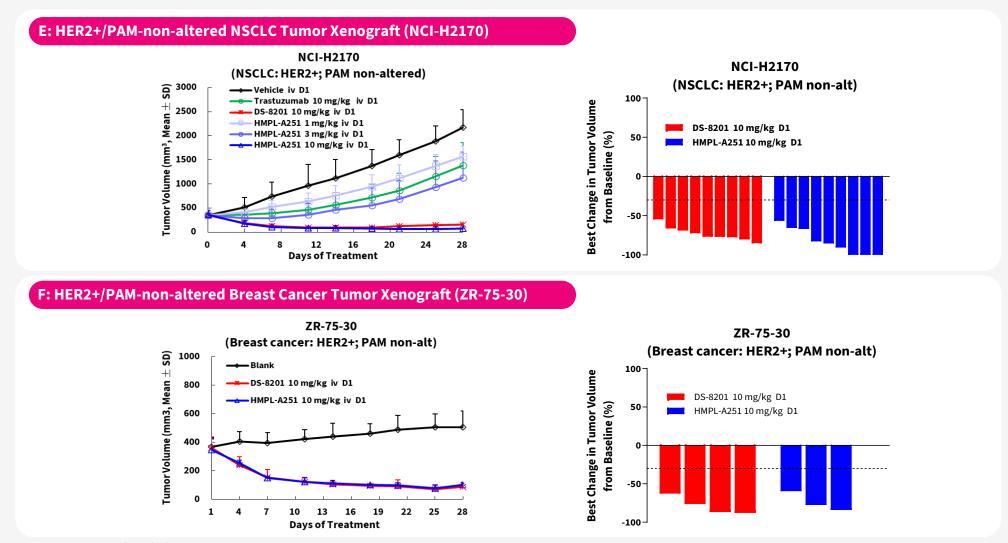

iv: intravenous; D1: day 1; alt: alteration

33

In vivo anti-tumor efficacy of HMPL-A251 (2/3)

HUTCHMED

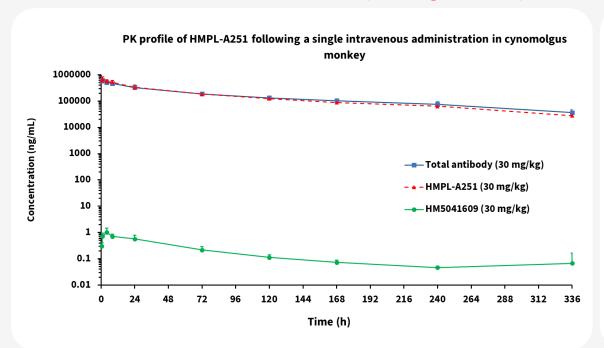
A single intravenous dose of HMPL-A251 demonstrated robust anti-tumor activity in HER2-low tumor models with PAM alterations, which was comparable or stronger than DS-8201 administered at an equivalent dose.

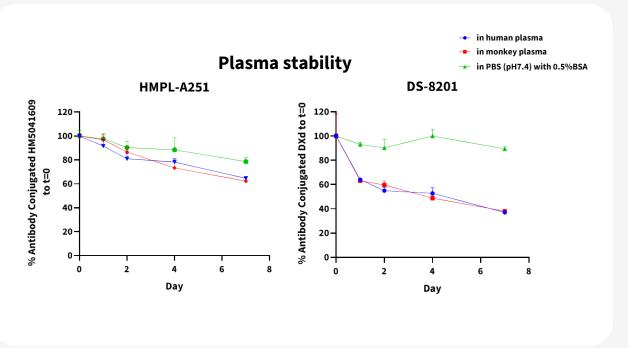


iv: intravenous; D1: day 1; alt: alteration

In vivo anti-tumor efficacy of HMPL-A251 (3/3)

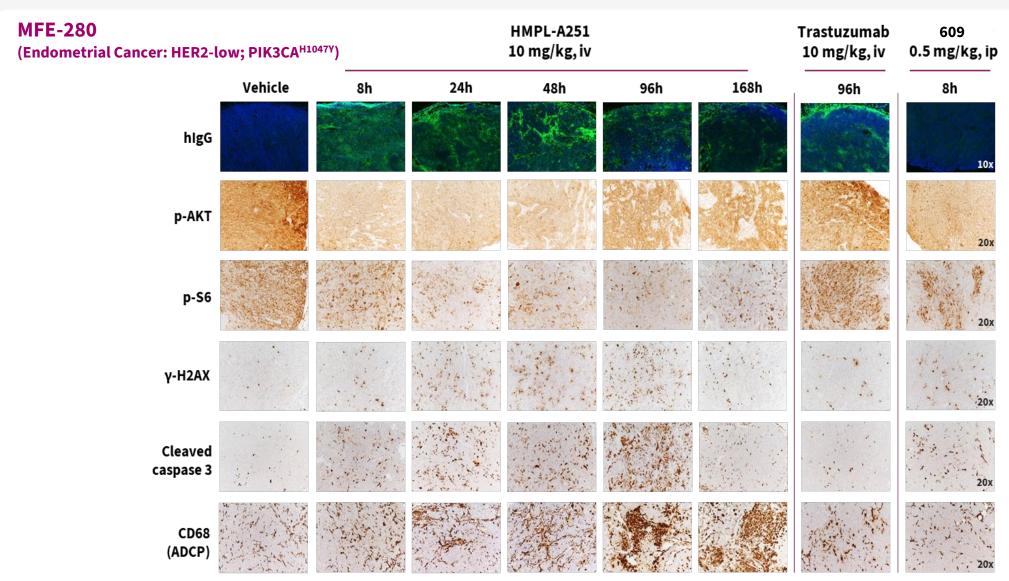
HUTCHMED


A single intravenous dose of HMPL-A251 demonstrated robust anti-tumor activity in HER2-positive tumor models without PAM alterations, which was comparable or stronger than DS-8201 administered at an equivalent dose.


Pharmacokinetic profile of HMPL-A251

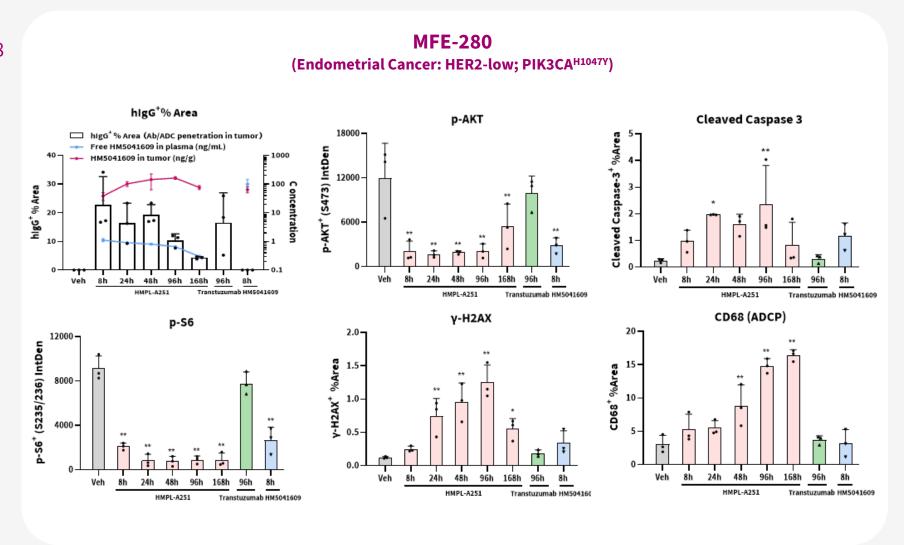
- HUTCHMED
- Following a single intravenous administration in cynomolgus monkeys, HMPL-A251 demonstrated a favorable PK profile with low clearance.
- The similar PK profile between HMPL-A251 and total antibody indicated good linker stability during circulation.

Pharmacokinetics of HMPL-A251 in cynomolgus monkeys



In vitro stability of HMPL-A251 and DS-8201 in plasma

In vivo pharmacodynamic activity of HMPL-A251 (1/2)


HUTCHMED

ATTC Platform

In vivo pharmacodynamic activity of HMPL-A251 (2/2)

- HMPL-A251 quickly distributed into the tumor, persisted for 168 hours, sustained intra-tumoral payload release with subsequent potent and durable inhibition of PI3K pathway as well as remarkable induction of DNA damage and tumor cell apoptosis.
- Significant accumulation of CD68-positive macrophages observed, suggesting strong ADCP function by HMPL-A251.
- Compared with systemic administration of 609, HMPL-A251 achieved a superior tumor-to-plasma ratio, offering the potential to minimize payload-mediated systemic toxicity.

Summary

- HMPL-A251 is a first-in-class PI3K/PIKK inhibitor conjugated with a HER2 antibody.
- HMPL-A251 has demonstrated potent anti-tumor activity in HER2-positive tumor models, with or without PAM alterations, as well as HER2-low tumor models harboring PAM alterations.
- HMPL-A251 exhibited favorable pharmacokinetic and safety profiles, warranting further clinical evaluation.
- US IND was cleared. China IND was under review. Phase 1 clinical study is expected to start in Q4 2025.

Preliminary development strategy

Preliminary Global Clinical Development Strategy

HUTCHMED

A data driven plan for US and China trials

Dose escalation MTD + RP2D

Dose expansion

Define biomarker strategy in various indications

HER2 positive and PAM (+) Single agent dose escalation RP2D ± MTD Population: HER2 positive and PAM (-) HER2 positive and PAM (-) HER2 positive and PAM (-)

Proof of Concept

Safety and efficacy

Solid Tumor A

HER2 positive and PAM +/-

- Mono therapy: ≥2L, inclusive of prior anti-HER2 therapies
- A251 + chemo: 1L or 2L

Solid Tumor B

HER2 positive and PAM +/-

- Mono therapy: ≥2L, inclusive of prior chemo and IO therapies
- A251 + chemo: 1L

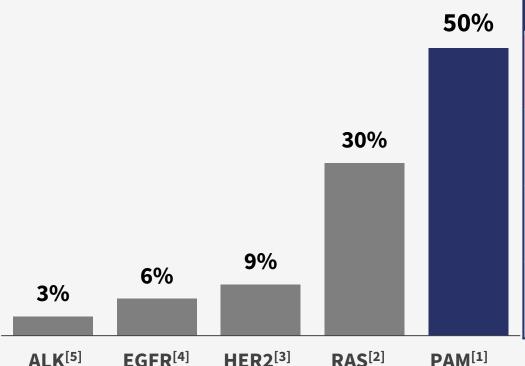
Solid Tumor C

HER2 positive and PAM +/-

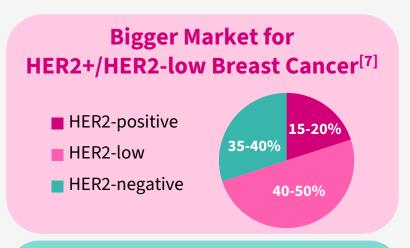
- Mono therapy: ≥2L, inclusive of prior chemo and IO therapies
- A251 + chemo: 1L

Solid Tumor A

HER2 low with PAM +


• Mono therapy: ≥2L, inclusive of prior anti-HER2 therapies

Multiple indications with significant market potential


HUTCHMED

PAM pathway may address a huge unmet medical need.

Major Cancers	US/EU/JP/CN Incidence ^[6]
Breast Cancer	1,280,984
Prostate Cancer	941,610
Gastric Cancer	646,560
Ovarian cancer	162,404

- ~37,000 patients
- US\$5 billion

^[1] Glaviano, A., et al. (2023). PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Molecule Cancer. 2023 Aug 18;22:138. doi: 10.1186/s12943-023-01827-6

^[2] Gajendra S., et al (2016). The value of genomics in dissecting the RAS-network and in guiding therapeutics for RAS-driven cancers. Semin Cell Dev Biol. 2016 Jun 20;58:108–117. doi: 10.1016/j.semcdb.2016.06.012

^[3] Jaeyun J., et al (2023). Clinical Implication of HER2 Aberration in Patients With Metastatic Cancer Using Next-Generation Sequencing: A Pan-Tumor Analysis. Precision Oncology, Volume 7. doi.org/10.1200/PO.22.00537

^[4] Minkyue S., et al (2025). Epidermal Growth Factor Receptor Aberrations Identified by Next-Generation Sequencing in Patients with Metastatic Cancers. Journal of Korean Cancer Association 2025;57(4):932-941. DOI: https://doi.org/10.4143/crt.2024.564

^[5] Aditya S., et al (2023) ALK fusions in the pan-cancer setting: another tumor-agnostic target? Precision Oncology Volume 7, Article number: 101 (2023)

^[6] Cancer Today. (2022). Global cancer data visualization tools (GLOBOCAN estimates)

^[7] Li Y., et al. (2023). Comprehensive characterization of HER2-low breast cancers: implications in prognosis and treatment. BioMedicine. 2023;91:104571

Antibody selection strategy: delivery of and combination with the payload

HUTCHMED

Antibody-payload tumor signaling synergy; combination with SOC in frontline line intended for all comers.

	Lung	Breast	Colorectum	Prostate	Stomach	Bladder	Pancreas	Ovary	HNSCC
PAM-	39%	73%	69%	73%	43%	58%	38%	54%	52%
altered PIK3CA Mutate PTEN Loss PTEN Mutated AKT1 Mutated									
HER2+ [2]		20%		10	20%	13	26%	27%	No data
TROP2+ [3]	64%	80%	68%	93%	64%	80%	55%	59%	63%
EGFR+ [4]	89%	27%	75%	36%	44%	71%	69%	33%	88%
B7H3+ ^[5,6]	73%	74%	70%	65%	69%	83%	41%	74%	100%

Antibody

HUTCHMED

HUTCHMED ATTC pipeline

Drug	Target	Payload	Indication	Status	Rights
ATTC 1	HER2	PI3K/PIKK	Solid tumors	Phase I initiation H2 2025: China IND filed & US IND approved	Global
HMPL-A251	1 ISK/1 IKK	John tumors	Pre-clinical	Globat	
ATTC 2	ATTC 2 Undisclosed Undisclosed		Solid tumors	Phase I initiation H1 2026: China & US	Global
HMPL-A580 Undisclosed	Olluisclosed	Pre-clinical		Global	
ATTC 3	Undical and Undical and		Solid tumors	Phase I initiation H2 2026: China & US	Clobal
HMPL-A830	Undisclosed	Undisclosed	Solid tulliors	Pre-clinical	Global

20-minute Break

(Only in Chinese Session)

Late-Stage Pipeline Updates

HUTCHMED diversified and validated late-stage pipeline

Drug	Study	Target Disease	Status		
	FRUSICA-1	2L pMMR EMC	China conditional approval in Dec 2024		
Fruquintinib^^	FRUSICA-2	2L RCC	China NDA acceptance in Jun 2025; data readout at ESMO 2025		
	SACHI	2L EGFRm MET-amp NSCLC	China NMPA approval in Jun 2025		
	SAVANNAH	2/3L EGFRm MET-amp/oe NSCLC	A high, clinically meaningful and durable ORR		
6 Pr. 11 #	SAFFRON	2/3L EGFRm MET-amp/oe NSCLC	Enrollment target reached (data readout H1 2026)		
Savolitinib*	SANOVO	1L MET-oe NSCLC	Fully enrolled in Aug 2025		
	Registration	3L MET-amp GC	Fully enrolled in Apr 2025 (potential NDA in 2025)		
	SAMETA	1L MET-driven PRCC	Fully enrolled		
Surufatinib	Phase II/III	1L PDAC	Phase II fully enrolled; data readout H2 2025		
	Bridging 3L r/r FL		China NMPA approval in Mar 2025		
Tazemetostat^	SYMPHONY-1	2L FL	Ongoing (HUTCHMED conducts the study in China)		
	ESLIM-01	2L ITP	Target re-submission will be in first half of 2026 (China NDA acceptance in 2024)		
Sovleplenib E	ESLIM-02	2L wAIHA	LPI in June 2025 (potential NDA in Q2 2026)		
Fanregratinib (HMPL-453)	Registration	2L FGFR2 fusion/rearrangement IHCC	LPI in Feb 2025 (potential NDA by the end of 2025)		
Ranosidenib (HMPL-306)	RAPHAEL	2L IDH1/2+ r/r AML	FPI in May 2024		

MET-amp = MET amplified; MET-oe = MET overexpressed; LPI = last-patient-in

^{*} In collaboration with AstraZeneca ^ In collaboration with Ipsen ^^ In collaboration with Lilly

Fruquintinib (FRUQ) plus sintilimab (SIN) versus axitinib (AXI) or everolimus (EVE) monotherapy as second-line treatment in patients with locally advanced or metastatic renal cell carcinoma (RCC)

The phase 3 part of a randomised, open-label, active-controlled phase 2/3 study (FRUSICA-2)

<u>Dingwei Ye^{1*}</u>, Zhisong He², Yuanyuan Qu¹, Xiaodong Zhang³, Xin Yao⁴, Yu Xie⁵, Jianming Guo⁶, Jing Li⁷, Bin Hu⁸, Jiasheng Bian⁹, Chaozhao Liang¹⁰, Jun Xiao¹¹, Nianzeng Xing¹², Lulin Ma¹³, Xiaoping Zhang¹⁴, Zhenhua Liu¹⁵, Hui Chen¹⁶, Qing Zou¹⁷, Chuize Kong¹⁸, Weiguo Su¹⁹;

on behalf of the FRUSICA-2 investigators

Berlin, Germany 17 Oct 2025

FRUSICA-2 study design

HUTCHMED '

Key Inclusion Criteria:

- Confirmed locally advanced or metastatic RCC
- Progressed on or intolerant to previous firstline VEGFR-TKI therapy
- Aged 18-75 years
- ECOG PS of 0 or 1

Key Exclusion Criteria:

 Received prior immune-modulatory therapy (except immunotherapy in adjuvant/neoadjuvant therapy without progression within 6 months postdiscontinuation)

Fruquintinib (FRUQ) + Sintilimab (SIN) (N=119)

- FRUQ: 5 mg, QD, oral, 2-wk on/ 1-wk off, 21-day/cycle
- SIN: 200 mg, Q3W, IV, 21-day/cycle

Stratification Factors:

- IMDC risk stratification: favourable vs intermediate vs poor
- ECOG PS score: 0 vs 1

(INV's choice of)
Axitinib (AXI) or Everolimus (EVE)
(N=115)

- AXI: 5 mg, BID, oral, 21-day/cycle
- EVE: 10 mg, QD, oral, 21-day/cycle

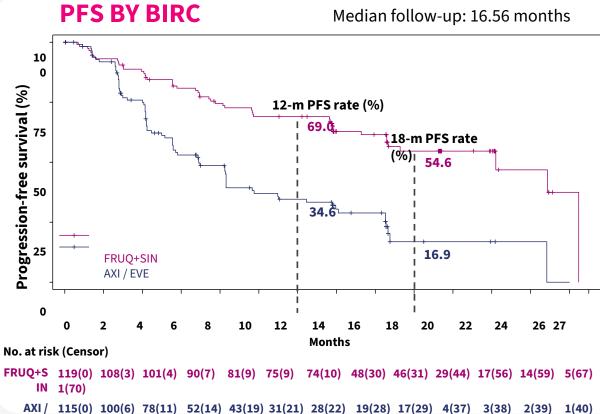
Treatment until progressive disease, death, intolerable toxicity, or other protocolspecified end of treatment criteria

Primary Endpoint

• BIRC-PFS per RECIST 1.1

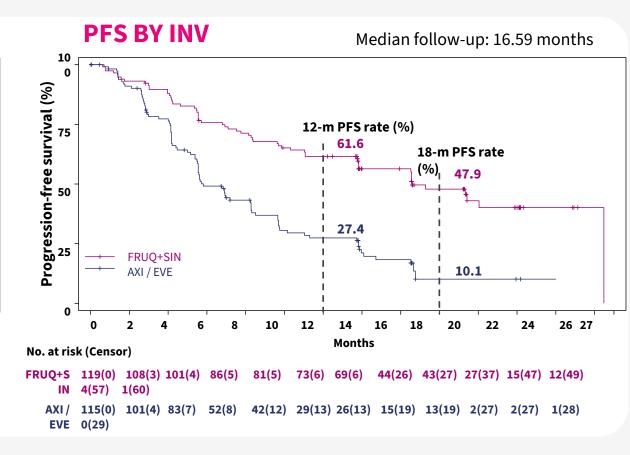
Secondary Endpoints

- INV-PFS per RECIST 1.1
- ORR, DCR
- DoR, TTR
- OS

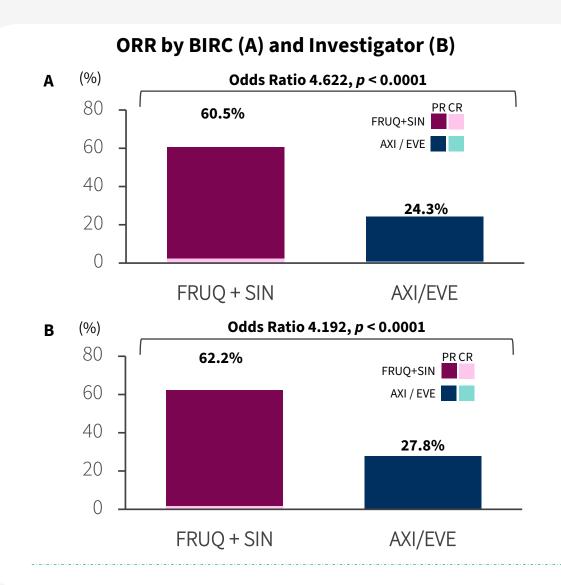

Statistical Consideration

90% power with 146 BIRC-PFS events in ITT population, one sided α =0.025, assuming HR=0.583

The pre-planned final analysis point: one month after achieving 146 INV-PFS events (regardless of strict censoring rules).


1:1

FRUQ plus SIN showed significantly improved median PFS


EVE 0(40)

	Event, n (%)	Median (95% CI), months			
FRUQ + SIN (N=119)	49 (41.2)	22.21 (16.59, -)			
AXI / EVE (N=115)	75 (65.2)	6.90 (5.55, 8.31)			
Stratified HR 0.373 (95% CI: 0.256, 0.544); Stratified log-rank <i>p</i> < 0.0001					

	Event, n (%)	Median (95% CI), months			
FRUQ + SIN (N=119)	59 (49.6)	16.59 (13.80, -)			
AXI / EVE (N=115)	86 (74.8)	5.82 (5.49, 8.28)			
Stratified HR 0.370 (95% CI: 0.260, 0.527); Stratified log-rank <i>p</i> < 0.0001					

Overall survival data were evolving with data maturity of about 20% ED

	EDUO I CIN	AVI / EVE
	FRUQ + SIN	AXI / EVE
	(N=119)	(N=115)
Per BIRC assessment		
Best overall response, n (%)		
CR	3 (2.5)	1 (0.9)
PR	69 (58.0)	27 (23.5)
SD	34 (28.6)	69 (60.0)
Non-CR/non-PD	2 (1.7)	5 (4.3)
PD	8 (6.7)	9 (7.8)
NE	3 (2.5)	4 (3.5)
ORR (95% CI), %	60.5 (51.13, 69.34)	24.3 (16.83, 33.23)
DCR (95% CI), %	90.8 (84.06, 95.29)	88.7 (81.45, 93.84)
Median DoR (95%CI), months	23.69 (14.46, -)	11.33 (6.90, -)
Media TTR (95%CI), months	2.79 (2.76, 2.86)	2.69 (1.41, 2.83)
Per investigator assessment		
Best overall response, n (%)	2 (1.7)	0
CR	72 (60.5)	32 (27.8)
PR	34 (28.6)	69 (60.0)
SD	0	09 (00.0)
Non-CR/non-PD	8 (6.7)	10 (8.7)
PD	3 (2.5)	4 (3.5)
NE	3 (2.3)	T (3.3)
ORR (95% CI), %	62.2 (52.84, 70.91)	27.8 (19.87, 36.95)
DCR (95% CI), %	90.8 (84.06, 95.29)	87.8 (80.42, 93.18)
Median DoR (95%CI), months	17.97 (13.83, -)	11.04 (4.17, 12.45)
Median TTR (95%CI), months	2.83 (2.79, 4.14)	2.76 (1.45, 2.83)

Summary

63%

Reduction in risk of disease progression or death with FRUQ plus SIN (by BIRC)

• FRUQ plus SIN demonstrated superior clinical benefits compared with physician's choice of AXI (87.8%) or EVE (12.2%) in advance RCC after first-line VEGFR-TKI

- ✓ PFS improvement:
 22.2 vs 6.9 months by BIRC (HR 0.373, *p*<0.0001)
- ✓ ORR benefit:
 60.5% vs 24.3% by BIRC (Odds Ratio 4.622, p<0.0001)
- The safety profile of FRUQ plus SIN was tolerable, and consistent with known profiles of each individual treatment.

FRUQ plus SIN demonstrated both statistically and clinically meaningful improvement in median PFS, suggesting the combination therapy could be a new second-line treatment for patients with advanced RCC

HUTCHN

Surufatinib: 1L PDAC

To be presented at ESMO Asia in Dec.

Multicenter, randomized, open-label, Phase II/III registration study

R 1:1 Induction followed by maintenance

Surufatinib RP3D + Camrelizumab + Gemcitabine + Nab-p

Followed by Suru/cam maintenance

Gemcitabine + Nab-p

Followed by Gemcitabine maintenance

Phase II

Primary endpoint: ORR

Secondary endpoint: PFS

Phase III

Primary endpoint: OS

53

Savolitinib: global and China progress driving future growth

7 potential registration studies: 3 global & 4 in China: advancing multiple indications and market opportunities.

H1 2025 achievement

2/3L TAGRISSO® ref. NSCLC with MET aberration Global

ELCC WCLC SAVANNAH study:

high, clinically meaningful and durable ORR ORR: 56% (investigator); 55% (BICR)

China

ELCC ELCC 2025 2024

METex14 skipping NSCLC

Confirmatory Phase IIIb study: 1L and 2L full approval in 2025

China

ASCO-

2L EGFR TKI ref. NSCLC with MET amplification SACHI study:

- China NMPA approval in Jun 2025
- Potential for earlier line treatment
- Savolitinib + TAGRISSO® Phase III registration study

Global

MET-driven Papillary Renal Cell Carcinoma (PRCC) SAMETA study:

- Enrollment completed in 2024
- Savolitinib + IMFINZI® vs. SUTENT® vs. IMFINZI®
- Phase III registration study

Ongoing enrollment

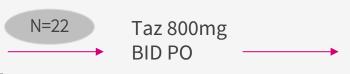
Global 2/3L TAGRISSO® refractory NSCLC with MET

China

aberration **SAFFRON study:** Savolitinib + TAGRISSO® Phase III registration study **Enrollment target reached** 1L EGFRm+ NSCLC with MET overexpression **SANOVO study: Enrollment completed in Aug 2025** Savolitinib + TAGRISSO® Phase III registration study **Gastric cancer with MET amplification** China AACR 2023 Potential NDA by end of 2025 Registration cohort FPI Mar 2023 **China BTD**

BTD = Breakthrough Therapy Designation

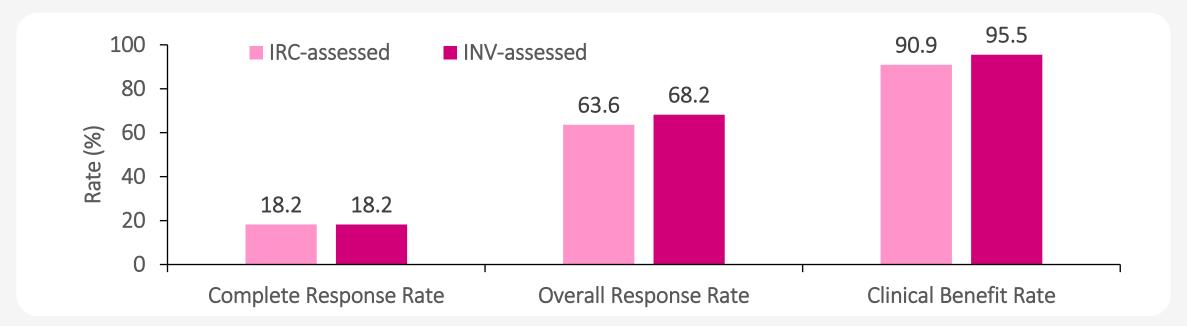
Tazemetostat: 3L FL China approval in 2025


HUTCHMED

- Tazemetostat in r/r FL with EZH2m.
- China is participating global Phase III EZH-302/SYMPHONY-1 (NCT04224493) evaluating TAZ+R2 for r/r FL patients.

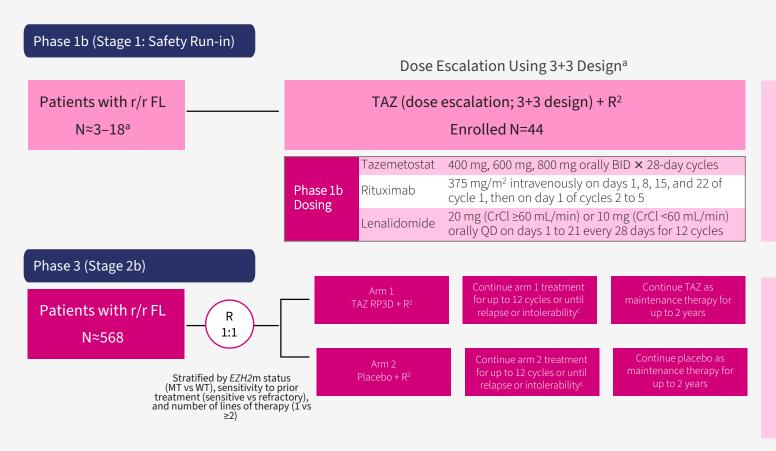
China bridging study 2021-TAZ-00CH1

- r/r FL 1-3a
- EZH2 mutation
- ≥ 2 prior systemic therapies, including anti-CD20 therapy


Primary endpoint EHA 2025

ORR (EZH2 MT):

• IRC: 63.6%


Investigator: 68.2%

Approved 2025 March

Tazemetostat: EZH-302/SYMPHONY-1

Primary Endpoints

- Safety and tolerability
- TAZ RP3D

Secondary Endpoint

• Safety PK parameters

- Preliminary efficacy analysis was performed on the response-evaluable population
 - Efficacy was reported as best overall response, PFS, and DOR^e
- The safety population^f was used for all safety analyses
- Primary EndpointPFS (by investigator)

Secondary Endpoint

 PFS (by IRC), ORR, DOR, DOCR, DCR, OS, QoL, population PK, safety and tolerability

- aAdditional patients enrolled to further study safety in the 600- and 800-mg groups. An optional stage 3, for patients with MT EZH2 FL only, will be executed if the efficacy in stage 2 fails for all patients but is sufficiently promising for patients with MT EZH2 FL (as assessed in a futility analysis during stage 2). Fall patients receive treatment in 28-day cycles. The response-evaluable population consists of patients from the intent-to-treat population who had adequate baseline and ≥1 postbaseline tumor assessment, per the International Working Group criteria for non-Hodgkin lymphoma. Per investigator assessment, according to Lugano 2014 response criteria. The safety population is defined as all patients who receive ≥1 dose of study drug
- BID, twice daily; CrCl, creatinine clearance; DCR, disease control rate; DOCR, duration of complete response; FL, follicular lymphoma; IRC, independent radiology committee; MT, mutant; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; PK, pharmacokinetics; PO, orally; QD, once daily; QoL, quality of life; R, randomization; R², lenalidomide plus rituximab; RP3D, recommended phase 3 dose; r/r, relapsed/refractory; TAZ, tazemetostat; WT, wild-type.

Fanregratinib (HMPL-453): a novel FGFR inhibitor

HUTCHMED

Completed enrollment in February 2025.

Potential China NDA in 2025.

Cohort 1

- FGFR2 fusion, inoperable locally advanced ICC
- Failure or unwillingness to 1L therapy, or toxicity intolerance

HMPL-453 150mg QD

1 Cycle = 21 days

Safety assessed

by SRC

Cohort 2

Cohort 2: Stage I

- Advanced solid tumor
- Failure of standard therapy

Safety-run in 6~9 pts

HMPL-453 300mg

2w on/1w off

1 Cycle = 21 days

Cohort 2: Stage II

- FGFR2 fusion/rearrangement, inoperable locally advanced or metastatic ICC
- Failure to at least 1L therapy, or toxicity intolerance

SAT pivotal 87pts

HMPL-453 300mg

2w on/1w off

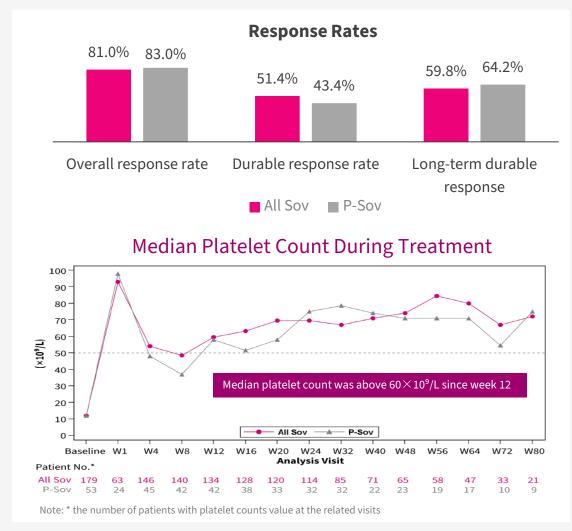
1 Cycle = 21 days

SRC will review the safety and efficacy data to decide to expansion

Primary endpoint Pivotal stage ORR(IRC) **Secondary endpoint** ORR (INV), DCR, TTR, DoR, PFS, OS

Cohort 2 stage I: Safety

Sovleplenib ESLIM-01 extension study update


- Target re-submission will be in first half of 2026.
- In the future, will look to continue overseas development.

Long-term treatment was effective in increasing and maintaining platelet count with well tolerated safety

A Follow-on, open-label sub-study^[1] (Total N=179: 126 initial + 53 P-Sov crossover)

- Overall response: 81.0%; durable response: 51.4%
 - FSLIM-01 at FHA: overall response 70.6%; durable response 48.4%
- Median cumulative duration of platelet count $\geq 50 \times 10^9 / L$: 38.9 weeks
- Use of rescue therapy: 22.9%
- Well tolerated, with a safety profile consistent with previous studies and no new safety signals were identified

Warm antibody autoimmune hemolytic anemia (wAIHA) **ESLIM-02 Phase II demonstrated encouraging results**

Fruquintinib

- Completed enrollment in June 2025.
- Potential China NDA in Q2 2026.

- 60°	Definition	Week 0-8 (Double blind)		Week 8-24 (Open label)	Week 0-24 (Double blind + Open label)	
Efficacy		Sovleplenib (n=16)	Placebo (n=5)	Cross-over from placebo (n=5)	All sovleplenib (n=21)	
Overall response, n (%)	Hb≥100 g/L with an increase of ≥20 g/L from baseline	7 (43.8)	0	3 (60.0)	14 (66.7)	
Durable response, n (%)	Hb≥ 100 g/L with an increase of ≥20 g/L from baseline on 3 consecutive visits with at least 7 days interval	3 (18.8)	0	2 (40.0)	10 (47.6)	

Closing Remarks

HUTCHMED today and beyond...

- FRUZAQLA®: H1 2025 up +25% to \$162.8m
- ORPATHYS®: 2nd potential global commercial success
- ELUNATE®: new indication (EMC) approved

Potential events next 12-months:

- SAFFRON recruitment completion
- Surufatinib PDAC Phase II readout
- Fanregratinib NDA submission
- Savo GC NDA submissions
- Fruquintinib RCC NMPA approval
- SAMETA and SAFFRON Phase III readout

Antibody-Targeted Therapy Conjugate (ATTC) platform with multiple selective, efficacious and tolerable drug candidates

- ✓ First candidate US + China clinical trial initiation in H2 2025
- In-licensing and out-licensing options

Profitable, ~\$2.7bn market cap, \$1.4bn cash

Q&A

www.hutch-med.com