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KRAS-driven cancer cells
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Introduction Results

TEADi restored the response of resistant cells to targeted therapy

YAP1 nucleus translocation promoted TEAD transcriptional activity

Validation of MoA of TEADI in Hippo-mutated cancer types
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Resistant cells showed more sensitivity to TEADi treatment

Figure 4: TEAD signaling was activated by YAP1 nucleus translocation.

(A) Increased transcription activities of TEAD and (B) elevated downstream gene expression
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Figure 3: YAP1 nucleus translocation was enhanced in resistant cells.
(A) & (B) IF assay showed that more YAP1 was translocated into nucleus in two resistant cell lines.

Figure 5: Targeted therapy-induced YAP1/TEAD activation was trans-suppressed with TEADi treatment.
(A) The transcriptional activities of TEAD and (B) two TEAD downstream genes were suppressed by TEADi.
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