

FRESCO-2: A global phase 3 multiregional clinical trial evaluating the efficacy and safety of fruquintinib in patients with refractory metastatic colorectal cancer

Arvind Dasari¹, Sara Lonardi², Rocio Garcia-Carbonero³, Elena Elez⁴, Takayuki Yoshino⁵, Alberto Sobrero⁶, James Yao¹, Pilar García-Alfonso⁷, Judit Kocsis⁸, Antonio Cubillo Gracian⁹, Andrea Sartore-Bianchi¹⁰, Taroh Satoh¹¹, Violaine Randrian¹², Jiri Tomasek¹³, Geoff Chong¹⁴, Zhao Yang¹⁵; William Schelman¹⁵; Marek Kania¹⁵, Josep Tabernero⁴, and Cathy Eng¹⁶

¹Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA, ²Medical Oncology Unit 1, Veneto Institute of Oncology IOV-IRCCS Padua, Padua, Italy, ³Oncology Department, Hospital Universitario 12 de Octubre, Imas 12, UCM, Madrid, Spain, ⁴Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Institute of Oncology, Barcelona, Spain, ⁵Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan, ⁶Department of Medical Oncology, Azienda Ospedaliera San Martino, Genoa, Italy, ⁷Medical Oncology, Hospital Universitario Gregorio Marañón, Madrid, Spain, ⁸Department of Oncoradiology, Bács -Kiskun Megyei Oktatókórház, Kecskemét, Hungary, ⁹Medical Oncology, Hospital Universitario Madrid Sanchinarro Centro Integral Oncológico Clara Campal, Madrid, Spain, ¹⁰Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy, ¹¹Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan, ¹²Hepato-Gastroenterology Department, Poitiers University Hospital, Poitiers, France, ¹³Department of Complex Oncology Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic, ¹⁴Olivia Newton-John Cancer & Wellness Centre, Austin Hospital, Heidelberg, VIC, Australia, ¹⁵HUTCHMED International Corporation, Florham Park, NJ, USA, ¹⁶Department of Medicine, Division of Hematology and Oncology, Vanderbilt-Ingram Cancer Center, Nashville, TN, USA

Declaration of Interests

Arvind Dasari

- Grants to Institution
 - AAA/Novartis, Crinetics, Eisai, Guardant Health, HUTCHMED, Natera
- Advisory Boards
 - AAA/Novartis, Crinetics, HUTCHMED, Personalis, Voluntis

Introduction

- The VEGF pathway is a key mediator of angiogenesis, which is necessary for tumor growth and metastasis¹
- Fruquintinib is a highly selective and potent oral tyrosine kinase inhibitor of VEGFRs-1, -2, and -3²
- The phase 3 FRESCO study showed the efficacy and safety of fruquintinib in Chinese patients with mCRC in a 3L+ setting³
 - mOS improvement of 2.7 months with fruquintinib vs placebo (9.3 m vs 6.6 m; HR=0.65 [95% CI, 0.51-0.83]; p<0.001)
 - mPFS improvement of 1.9 months with fruquintinib vs placebo (3.7 m vs 1.8 m; HR=0.26 [95% CI, 0.21-0.34]; p<0.001)</p>
 - Fruquintinib was approved in China in 2018 for 3L+ mCRC
 - Standard of care for mCRC in China differed from global patterns when FRESCO was conducted
- There remains an unmet need for effective treatment options for patients with refractory mCRC
- FRESCO-2 is a global phase 3 study evaluating the efficacy and safety of fruquintinib in more heavily pretreated mCRC patients reflective of current global treatment practices

1. Hicklin DJ et al. *J Clin Oncol* 2005; 2. Sun Q et al. *Cancer Biol Ther* 2014. 3. Li J et al. *JAMA* 2018.

Dasari A et al. ESMO 2022, Presentation LBA25

FRESCO-2 Study Design

Patient Eligibility

- Prior treatment with fluoropyrimidine-, oxaliplatin- and irinotecan-based chemotherapy, an anti-VEGF biological therapy, and, if *RAS* wild type, an anti-EGFR therapy
- Progression on, or intolerance to, TAS-102 and/or regorafenib
- Prior treatment with an immune checkpoint inhibitor or BRAF inhibitor if indicated

Stratification Factors

- Prior therapy (TAS-102 vs regorafenib vs TAS-102 and regorafenib)
- RAS mutational status (wild-type vs mutant)
- Duration of metastatic disease (≤18 months vs >18 months)

Note: To ensure the patient population is reflective of clinical practice, the number of patients treated with prior regorafenib was limited to 344 patients (50%)

N=687

BSC, best supportive care. NCT04322539.

Dasari A et al. ESMO 2022, Presentation LBA25

Fruquintinib 5 mg PO, QD

(3 weeks on, 1 week off)

BSC

(N=458)

Placebo 5 mg PO, QD

(3 weeks on, 1 week off)

BSC

(N=229)

Treatment until

progression or

unacceptable toxicity

Study Objectives and Statistical Assumptions

- Objectives
 - Primary: Overall Survival
 - Key Secondary: Progression-Free Survival
 - Other Secondary: Objective Response Rate, Disease Control Rate, Safety
- Sample Size
 - 687 patients (480 OS events) would provide 90% power to detect a difference in OS with a HR of 0.73 at a 2-sided α of 0.05
 - Median OS assumption in the placebo arm is 5.0 months and median OS in fruquintinib arm is 6.8 months
 - Non-binding interim futility analysis at one-third (160) of OS events
- Safety monitored by independent data monitoring committee

Patient and Disease Characteristics

ITT Population Enrollment: Sep 2020 to Dec 2021 Data Cutoff: 24 June 2022

Characteristic, n (%)		Fruquintinib (N=461)	Placebo (N=230)	Characteristic, n (%)		Fruquintinib (N=461)	Placebo (N=230)
Age, y	Median (range) ≥ 65	64 (25, 82) 214 (46.4)	64 (30, 86) 111 (48.3)	Duration of metastatic disease	≤ 18 mo > 18 mo	37 (8.0) 424 (92.0)	13 (5.7) 217 (94.3)
Sex	Female Male	216 (46.9) 245 (53.1)	90 (39.1) 140 (60.9)	RAS status	WT Mutant	170 (36.9) 291 (63.1)	85 (37.0) 145 (63.0)
Region	North America Europe Asia Pacific	82 (17.8) 329 (71.4) 50 (10.8)	42 (18.3) 166 (72.2) 22 (9.6)	BRAF V600E mutation	No Yes Other/Unknown	401 (87.0) 7 (1.5) 5 (11.5)	198 (86.1) 10 (4.3) 22 (9.6)
ECOGPS	0 1	196 (42.5) 265 (57.5)	102 (44.3) 128 (55.7)	Number of prior treatment lines in metastatic disease	Median (range) ≤ 3 > 3	5 (2, 16) 125 (27.1) 336 (72.9)	5 (2, 12) 64 (27.8) 166 (72.2)
Primary site at 1st diagnosis	Colon left Colon right Colon left and right Colon unknown	192 (41.6) 97 (21.0) 4 (0.9) 25 (5.4)	92 (40.0) 53 (23.0) 2 (0.9) 13 (5.7)	Prior therapies	VEGF inhibitor EGFR inhibitor	445 (96.5) 180 (39.0)	221 (96.1) 88 (38.3)
Liver metastases	Rectum only Yes	143 (31.0) 339 (73.5)	70 (30.4) 156 (67.8)	Prior TAS-102 and/or regorafenib	TAS-102 Regorafenib Both	240 (52.1) 40 (8.7) 181 (39.3)	121 (52.6) 18 (7.8) 91 (39.6)

Primary Endpoint: Overall Survival

Fruquintinib Placebo 1.0 -**Events/Patients (%)** 317/461 (68.8%) 173/230 (75.2%) Stratified p-value (log-rank) < 0.001 0.8-Stratified HR (95% CI) 0.662 (0.549, 0.800) Overall Survival (%) Median (mo) (95% CI) 7.4 (6.7, 8.2) 4.8 (4.0, 5.8) **Probability of** mOS difference (mo) 2.6 0.6-0.4-Median follow up: Fruguintinib: 11.3 mo 0.2-Placebo: 11.2 mo Fruquintinib + BSC Placebo + BSC Time since randomization (months) Patients at Risk Fruguintinib Placebo

Subsequent anti-cancer medication balanced between the two arms: 29.4% fruquintinib arm vs. 34.3% placebo arm

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

Dasari A et al. ESMO 2022, Presentation LBA25

congress

ITT Population

OS Subgroup Analysis

Subgroup		Fruquintinib n/N	Placebo n/N		HR (95% CI)
ITT population		317/461	173/230	⊢●→	0.662 (0.549, 0.800)
Age	< 65	171/247	89/119	⊢	0.694 (0.534, 0.903)
	≥ 65	146/214	84/111	⊢●1	0.648 (0.494, 0.851)
Ser	Female	149/216	61/90	F●- <u>+</u> -1	0.828 (0.609, 1.125)
002	Male	168/245	112/140	⊢ ●–1	0.584 (0.456, 0.749)
ECOG PS	0	121/196	67/102	⊢_ ● i	0.775 (0.573, 1.050)
200013	1	196/265	106/128	⊢ ●1	0.571 (0.499, 0.728)
	Caucasian	260/367	145/192	⊢●1 į	0.696 (0.567, 0.854)
Race	Asian	24/43	14/18	⊢+ ¦	0.377 (0.171, 0.833)
Nace	African American	7/13	5/7	⊢	0.550 (0.135, 2.231)
	Other	26/38	9/13	FI ●I	1.199 (0.478, 3.008)
	North America	50/82	29/42	⊢	0.620 (0.387, 0.995)
Region	Europe	237/329	130/166	⊢●→┤	0.688 (0.554, 0.855)
	Asia Pacific	30/50	14/22		0.631 (0.321, 1.241)
Duration of metastatic	≤ 18 mo	30/37	8/13		0.605 (0.260, 1.406)
disease	> 18 mo	287/424	165/217	⊢●→	0.642 (0.529, 0.779)
Primary tumor site at	Colon	195/279	109/137	⊢-●1 ¦	0.672 (0.528, 0.855)
1st diagnosis	Rectum	99/143	49/70	⊢ ● 1 ¦	0.633 (0.446, 0.900)
1st diagnosis	Colon and Rectun	า 23/39	15/23		0.686 (0.339, 1.388)
RAS status	WT	119/170	62/85	⊢_● ¦	0.667 (0.489, 0.909)
NAO Status	Mutant	198/291	111/145	⊢●→ ¦	0.683 (0.539, 0.865)
# of prior treatment lines	≤ 3	80/125	45/64	⊢ <mark>⊢</mark> _	0.714 (0.488, 1.043)
in metastatic disease	>3	237/336	128/166	⊢●→	0.645 (0.519, 0.802)
Prior VEGEi	Yes	306/445	167/221	⊢●1 ¦	0.683 (0.565, 0.827)
	No	11/16	6/9	_	0.193 (0.024, 1.557)
Prior EGERi	Yes	127/180	64/88	⊢−●−−↓	0.689 (0.507, 0.936)
	No	190/281	109/142	⊢●1 ¦	0.666 (0.524, 0.846)
Prior TAS-102 and Regorafenib	TAS-102	165/240	88/121	⊢ ● → I	0.723 (0.557, 0.938)
	Regorafenib	25/40	12/18		0.772 (0.379, 1.573)
	Both	127/181	73/91		0.600 (0.447, 0.805)
Liver metastases	Yes	255/339	132/156	⊢●1	0.576 (0.465, 0.713)
	No	62/122	41/74		0.771 (0.513, 1.158)
					10
congress				Fruquintinib Placebo	

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

ITT Population

Progression-Free Survival

9

ITT Population

ITT Population

PFS Subgroup Analysis

Subgroup		Fruquintinib n/N	Placebo n/N			HR (95% CI)
ITT population		392/461	213/230	⊢●⊣		0.321 (0.267, 0.386)
Age	< 65	214/247	111/119	⊢-●1		0.329 (0.255, 0.424)
	≥ 65	178/214	102/111	⊢ −●−−1		0.314 (0.241, 0.410)
Sax	Female	190/216	81/90	⊢ −●−−1		0.351 (0.263, 0.468)
Jex	Male	202/245	132/140	⊢-●1		0.302 (0.237, 0.385)
ECOG PS	0	169/196	90/102	⊢ ●1		0.264 (0.197, 0.354)
ECOG F3	1	223/265	123/128	⊢ −●−−1		0.351 (0.277, 0.446)
	Caucasian	312/367	176/192	⊢ ●−1		0.313 (0.255, 0.383)
Paco	Asian	37/43	17/18	⊢ I		0.286 (0.140, 0.584)
Nace	African American	9/13	7/7	•		0.081 (0.014, 0.468)
	Other	34/38	13/13	⊢●	<u>+</u> 1	0.525 (0.248, 1.110)
	North America	64/82	36/42	⊢	1	0.261 (0.163, 0.417)
Region	Europe	283/329	158/166	⊢●1		0.324 (0.261, 0.401)
	Asia Pacific	45/50	19/22	⊢ I		0.271 (0.144, 0.509)
Duration of metastatic	≤ 18 mo	35/37	11/13	⊢	1	0.361 (0.166, 0.787)
disease	> 18 mo	357/424	202/217	⊢●−1		0.300 (0.249, 0.363)
Primany tumor site at	Colon	241/279	127/137	⊢-●1		0.294 (0.231, 0.375)
1st diagnosis	Rectum	118/143	64/70	⊢		0.315 (0.225, 0.441)
	Colon and Rectur	า 33/39	22/23	⊢		0.386 (0.202, 0.739)
RAS status	WT	145/170	76/85	⊢_●		0.333 (0.245, 0.454)
The status	Mutant	247/291	137/145	⊢●1		0.318 (0.254, 0.399)
# of prior treatment lines	≤ 3	108/125	57/64	⊢		0.280 (0.192, 0.409)
in metastatic disease	>3	284/336	156/166	⊢●		0.334 (0.270, 0.412)
Prior VEGEi	Yes	377/445	206/221	⊢●−1		0.335 (0.278, 0.402)
	No	15/16	7/9			0.020 (0.001, 0.385)
Prior EGERi	Yes	154/180	79/88	⊢_●		0.325 (0.239, 0.440)
	No	238/281	134/142	⊢ ●1		0.310 (0.247, 0.391)
Prior TAS-102 and	TAS-102	210/240	111/121	⊢-●1		0.367 (0.287, 0.470)
Regorafenib	Regorafenib	29/40	16/18	⊢ 		0.292 (0.139, 0.611)
	Both	153/181	86/91	⊢-●1		0.285 (0.212, 0.382)
Liver metastases	Yes	297/339	149/156	⊢●1		0.291 (0.234, 0.362)
	No	95/122	64/74	⊢_●		0.334 (0.235, 0.476)
					1 Eavore 10	
congress				Fruquintinib	Placebo	
ESYU						

Dasari A et al. ESMO 2022, Presentation LBA25

PARIS 2022

ITT Population

Anti-Tumor Activity

Category	Fruquintinib N=461	Placebo N=230	
Confirmed ORR (CR + PR)ª	7 (1.5) 0		
Adjusted difference (95% CI)	1.5 (0.4, 2.7)		
Two-sided p-value	0.059		
Disease Control Rate (CR + PR + SD)	256 (55.5)	37 (16.1)	
Adjusted difference (95% CI)	39.4 (32	.8, 46.0)	
Two-sided p-value	< 0	.001	

^aNo CR reported

Tumor assessments were performed every 8 weeks until disease progression

Safety Population

Study Drug Exposure

Category	Fruquintinib (N=456)ª	Placebo (N=230)ª
Cycles received, median (Q1, Q3)	3.00 (2.00, 6.00)	2.00 (1.00, 3.00)
Relative dose intensity (%), median (Q1, Q3)	91.63 (74.13, 99.52)	97.62 (86.67, 100.00)
Number of patients with drug interruption, n (%)	312 (68.4)	110 (47.8)
Number of patients with any dose reduction, n (%) Reduction from 5mg to 4mg	121 (26.5) 121 (26.5)	10 (4.3) 10 (4.3)
Reduction from 4mg to 3mg	45 (9.9)	0

^aOf 5 patients assigned to the fruquintinib arm, 3 did not receive fruquintinib treatment and 2 patients received placebo instead. Two patients assigned to the placebo arm did not receive treatment.

Safety Population

Overview of TEAEs

Category, n (%)	Fruquintinib (N=456)	Placebo (N=230)
Any TEAE	451 (98.9)	213 (92.6)
Grade ≥ 3	286 (62.7)	116 (50.4)
Treatment-related Grade ≥ 3	164 (36.0)	26 (11.3)
Leading to Death	48 (10.5)	45 (19.6)
Any Serious TEAE	171 (37.5)	88 (38.3)
Grade ≥ 3	162 (35.5)	85 (37.0)
TEAEs leading to dose modifications		
Dose interruption	247 (54.2)	70 (30.4)
Dose reduction	110 (24.1) ^a	9 (3.9)
Dose discontinuation	93 (20.4) ^b	49 (21.3)

^aMost common TEAEs leading to dose reduction in the fruquintinib arm: hand-foot syndrome (5.3%), hypertension (3.7%), and asthenia (3.5%). ^bMost common TEAE leading to dose discontinuation in the fruquintinib arm: asthenia (1.5%)

Safety Population

Most Common TEAEs

(Any Grade \geq 15% in Either Arm)

TEAE, n (%)	Fruquintinib (N=456)		Placebo (N=230)	
	Any Grade	Grade ≥ 3	Any Grade	Grade ≥ 3
Patients with ≥1 TEAE	451 (98.9)	286 (62.7)	213 (92.6)	116 (50.4)
Hypertension	168 (36.8)	62 (13.6)	20 (8.7)	2 (0.9)
Asthenia	155 (34.0)	35 (7.7)	52 (22.6)	9 (3.9)
Decreased appetite	124 (27.2)	11 (2.4)	40 (17.4)	3 (1.3)
Diarrhea	110 (24.1)	16 (3.5)	24 (10.4)	0
Hypothyroidism	94 (20.6)	2 (0.4)	1 (0.4)	0
Fatigue	91 (20.0)	18 (3.9)	37 (16.1)	2 (0.9)
Hand-foot syndrome	88 (19.3)	29 (6.4)	6 (2.6)	0
Abdominal pain	83 (18.2)	14 (3.1)	37 (16.1)	7 (3.0)
Nausea	79 (17.3)	3 (0.7)	42 (18.3)	2 (0.9)
Proteinuria	79 (17.3)	8 (1.8)	12 (5.2)	2 (0.9)
Constipation	78 (17.1)	2 (0.4)	22 (9.6)	0
Dysphonia	74 (16.2)	0	12 (5.2)	0

Conclusions

- FRESCO-2 met the primary endpoint of OS
 - mOS improvement of 2.6 months with fruquintinib vs placebo (7.4 m vs 4.8 m; HR=0.66 [95% CI, 0.55-0.80]; *p* < 0.001)
 - OS improvement was consistent across all pre-specified subgroups
- FRESCO-2 met the key secondary endpoint of PFS
 - mPFS improvement of 1.9 months with fruquintinib vs placebo (3.7 m vs 1.8 m; HR=0.32 [95% CI, 0.27-0.39]; *p* < 0.001)</p>
 - PFS improvement was consistent across all pre-specified subgroups
- Fruquintinib was well tolerated with a safety profile consistent with the previously established monotherapy profile
- The FRESCO-2 results are consistent with those of FRESCO and support a new global oral treatment option for patients with refractory mCRC, which enriches the continuum of care for these patients

Acknowledgements

• Thank you to the patients and their families

• Thank you to the FRESCO-2 Steering Committee, IDMC members and the HUTCHMED FRESCO-2 study team

- Study was sponsored by HUTCHMED
- Writing and editorial assistance were provided by Team 9 Science, a Vaniam Group Agency
- All authors contributed to and approved the presentation

Thank you to the many investigators and their staff

Australia	France continued	Italy continued	United States continued
Chong, Geoffrey	Mazard, Thibault	Tamburini, Emiliano	Braiteh, Fadi
Coward, Jermaine	Parzy, Aurelie	Zampino, Maria Giulia	Brooks, Donald
Gibbs, Peter	Pernot, Simon	Zaniboni, Alberto	Castine, Michael
Karapetis, Christos	Randrian, Violaine	Japan	Chang, David
Price, Timothy	Tougeron, David	Esaki, Taito	Cline, Vivian
Segelov, Eva	Trouilloud, Isabelle	Kawakami, Hisato	Cosgrove, David
Austria	Germany	Komatsu, Yoshito	Cusnir Mike
Gruenberger, Birgit	Al-Batran, Salah-Eddin	Kotani Daisuke	Dasari Arvind
Heibl, Sonia	Angermeier, Stefan	Masuishi, Toshiki	Diab. Maria
Niedersuess-Beke, Dora	Arnold, Dirk	Nishina, Tomohiro	Driscoll, Michael
Piringer, Gudrun	Folprecht, Gunnar	Satoh Taroh	Eng Cathy
Rumpold, Holger	Goekkurt, Erav	Sunakawa Yu	Eakih Manyan
Schreil Georg	Hacker Ulrich	Takashima Ateuo	Gaffar Vousuf
Voskova, Daniela	Hofheinz Ralf	Vamazaki Kontaro	George Ben
Winder, Thomas	Karthaus Meinolf	Poland	Gorston Todd
Belgium	Kasper-Virchow Stefan	Wurwicz Lucian	Haddad Dami
Decaestecker, Jochen	Kroening Hendrik	Wyrwicz, Edciair Wyrogeki, Biotr	Hadudu, Rami
Delaunoit, Thierry	Modest Dominik	Spain	Hubberd Jeleen
Dermine, Alexandre	Moorabrend Enno	Alcaida Carcia, Julia	Hubbard, Joleen
Faugeras, Laurence	Poichardt Datar	Cubilla Crasian Antonia	Jones, Jeremy
Gauthier, Demolin	Siebler, Juergen	Elas Esmandas, Elana	Kancharla, Venkat
Hendrickx, Koen	Hungany	Elez Fernandez, Elena	Kim, George
Janssens Jos	Arkosy Peter	Cellege Diezee Javier	Krauss, John
Marchal Nathalie	Baccam Ali	Gallego Plazas, Javier	Kundra, Ajay
Peeters Marc	Badalay Gyorgy	Garcia-Altonso, Pilar	Larson, Timothy
Sinani Isabelle	Cooozi Tibor	Garcia-Carbonero, Rocio	Lin, Jianqing
Van Cutsem Eric	Erfan Jozoof	Jimenez Fonseca, Paula	Lingerfelt, Brian
Van Den Evinde, Marc	Enan, Jozsen	Limon Miron, Maria Luisa	Nallapareddy, Sujatha
Czech Republic	Lites Friles	Lopez Lopez, Rafael	Nguyen, Anthony
Melichar Bohuslav	Hitre, Erika	Ortiz Morales, Maria Jose	Oubre, David
Smakal Martin	Kocsis, Judit	Rivera Horrero, Fernando	Patel, Anjan
Tomasak liri	Ivianr, Karoly	Rodriguez Salas, Nuria	Patel, Vijay
Vocka Michal	Papal, Zsuzsanna	Rosello Keranen, Susana	Paulson, Andrew Scott
Estonia	Uhlyiarik, Andrea	Sanchez Ruiz, Antonio	Ratnam, Suresh
Elme Anneli	Italy	Sastre Valera, Javier	Richards, Donald
Kuusk Gerli	Avallone, Antonio	United Kingdom	Sanchez-Rivera, Ines
Magi Andrus	Banzi, Maria	Arkenau, Hendrik-Tobias	Sharma, Vivek
Tuul Tiina	Berardi, Rossana	Chau, Ian	Shergill, Ardaman
France	Cappetta, Alessandro	Fontana, Elisa	Shields, Anthony
Aparicio Thomas	Cremolini, Chiara	Samuel, Leslie	Shumway, Nathan
Rachat Joan Bantista	di Bartolomeo, Maria	United States	Siegel, Richard
Bacoppior Mathiou	Lonardi, Sara	Alidina, Amyn	Singh, Jaswinder
Baconnier, Matheu Bac Abdalabapi, Mathe	Santoro, Armando	Al-Jazavrly, Ghassan	Spigel, David
Berg, Christenhe	Sartore-Bianchi, Andrea	Bekaii-Saab, Tanios	Tourneh, Anis
Durg, Christophe	Sobrero, Alberto	Bendell, Johana	Velasco, Jose
Ducreux, Michel		Bhanderi, Viralkumar	Wu. Christina

Ghiringhelli, Francois Lievre, Astrid