TPS154

FRESCO-2: A Global Phase 3 Study to Investigate the Efficacy and Safety of Fruquintinib in Patients with Metastatic Colorectal Cancer

Dasari A,¹ Yao J,¹ Sobrero A,² Yoshino T,³ Schelman W,⁴ Yang Z,⁴ Chien C,⁴ Kania M,⁴ Tabernero J, and Eng C ⁶

¹ MD Anderson Cancer Center, Houston, TX, USA; ² Medical Oncology Unit, Ospedale San Martino, Genova Italy; ³ Department of Gastroenterology and Gastrointestinal Oncology National Cancer Center Hospital East, Chiba Japan; ⁴ Hutchison MediPharma International Inc, Florham Park, NJ, USA;

⁵ Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; ⁶ Division Hematology and Oncology, Vanderbilt-Ingram Cancer Center

INTRODUCTION

- Patients with metastatic colorectal cancer (mCRC) have limited treatment options following progression on standard therapies. The current standard of care after patients progress on trifluridine/tipiracil (TAS-102) or regorafenib is to re-challenge with previous systemic treatments, enroll in a clinical trial or pursue best supportive care (BSC).
- Fruquintinib (HMPL-013) is a novel, potent and highly selective oral tyrosine kinase inhibitor of vascular endothelial growth factor receptors-1, -2, and -3.¹
- Fruquintinib was approved in China for patients with refractory metastatic colorectal cancer (mCRC) in September 2018 based on results of the FRESCO trial (NCT02314819),² a phase 3 study in patients with refractory mCRC in the 3rd line or later setting. Results showed fruquintinib significantly improved median overall survival (mOS) and median progression-free survival (mPFS) when compared to placebo:
- mOS: 9.30 vs. 6.57 months (HR=0.65, p<0.001)
- mPFS: 3.71 vs. 1.84 months (HR=0.26, p<0.001)
- The toxicities of fruquintinib were manageable.
- A phase 1/1b dose-confirmation study was conducted in the US. Results were previously reported and confirmed the established RP2D in China with similar PK characteristics,³ and showed preliminary efficacy and safety in patients with refractory mCRC who had progressed on TAS-102 and/or regorafenib.⁴
- At the time FRESCO was conducted in China, the SOC for patients with mCRC differed from that outside of China.
- Here we present an ongoing, global, multicenter, randomized, placebo-controlled phase 3 trial (FRESCO-2; 2019-013-GLOB1; NCT04322539) being conducted to investigate the efficacy and safety of fruquintinib plus BSC to placebo plus BSC in patients with refractory mCRC.

METHODS

- FRESCO-2 is open and enrolling in the US, Europe and Japan and is anticipated to open in Australia in Q1 2021.
- A safety lead-in phase is being conducted in 6 patients in Japan prior to opening enrollment to the randomized portion of the study.
- Eligible patients must have mCRC and have progressed on or been intolerant to all standard chemotherapies, relevant biologics and <u>TAS-102</u> or regorafenib or both.
- Best supportive care is determined by local clinical practice.

FRESCO-2 STUDY DESIGN

KEY INCLUSION CRITERIA

- Histologically or cytologically documented metastatic colorectal adenocarcinoma. RAS, BRAF, and microsatellite instability (MSI)/mismatch repair (MMR) status must be documented.
- Patients must have progressed on or been intolerant to treatment with trifluridine/tipiracil (TAS-102) and/or regorafenib. Patients are considered intolerant to TAS-102 or regorafenib if they have received at least 1 dose of either agent and were discontinued from therapy for reasons other than disease progression. Patients must also have been previously treated with standard approved therapies, (fluoropyrimidine-, oxaliplatin-, and irinotecan-based chemotherapy, an anti-VEGF biological therapy, and, if RAS wild-type, an anti-EGFR therapy).
- Patients with microsatellite-high (MSI-H) or mismatch repair deficient (dMMR) tumors must have been treated with immune checkpoint inhibitors if approved and available in the subject's country unless subject is ineligible for treatment with a checkpoint inhibitor.
- Patients with BRAF mutant tumors must have been treated with a BRAF inhibitor if approved and available in the subject's country unless subject is ineligible for treatment with a BRAF inhibitor.
- Eastern Cooperative Oncology Group (ECOG) performance status of 0-1.
- Have measurable disease according to RECIST version 1.1, assessed locally.
- Expected survival >12 weeks.

KEY EXCLUSION CRITERIA

- Absolute neutrophil count (ANC) <1.5×10⁹/L, platelet count <100×10⁹/L, or hemoglobin <9.0 g/dL.
- Serum total bilirubin >1.5 x the upper limit of normal (ULN).
 Patients with Gilbert syndrome, bilirubin <2 x ULN, and normal AST/ALT are eligible.</p>
- Alanine aminotransferase (ALT) or aspartate aminotransferase (AST) >2.5 x ULN in patients without hepatic metastases; ALT or AST >5 x ULN in patients with hepatic metastases.
- Serum creatinine >1.5 × ULN or creatinine clearance <60 mL/min.
- Urine dipstick protein ≥2+ or 24-hour urine protein ≥1.0 g/24-h.
- Uncontrolled hypertension: systolic blood pressure ≥140 mm Hg and/or diastolic blood pressure ≥90 mm Hg.
- International normalized ratio (INR) >1.5 × ULN or activated partial thromboplastin time (aPTT) >1.5 × ULN, unless the patient is currently receiving anticoagulants.
- History or presence of hemorrhage from within 2 months prior to screening.
- History of a thromboembolic event within 6 months prior to screening.
- Stroke and/or transient ischemic attack within 12 months prior to screening.
- Clinically significant cardiovascular disease within 6 months prior to enrollment.

OBJECTIVES

Primary Objective	Primary Endpoint
Evaluate the potential of fruquintinib to prolong OS	• OS
Key Secondary Objective	Key Secondary Endpoint
Evaluate the potential of fruquintinib to prolong PFS	• PFS
Secondary Objectives	Secondary Endpoints
Evaluate the anti-tumor activity of fruquintinib in combination of BSC	Objective response rateDisease control rateDuration of objective response
Determine the safety and tolerability of fruquintinib in combination of BSC	 Occurrence and severity of AEs Relative dose intensity and dose modifications ECG and clinical laboratory abnormalities
Evaluate the pharmacokinetic (PK) profile and the effect of fruquintinib on cardiac repolarization	Plasma concentrations of fruquintinib and M11QTc interval
Evaluate the relationship between fruquintinib exposure and endpoints for efficacy and safety	Exposure-response with efficacy (eg, OS) and safety (eg, AEs) endpoints
Evaluate the effects fruquintinib on PROs	 Changes from baseline in EORTC QLQ-C30 Changes from baseline in EQ-5D-5L
Assess the impact of fruquintinib on health resource utilization	Reason of resource utilizationType of resource utilization and its duration
Exploratory Objectives	Exploratory Endpoints
Explore the potential predictive biomarkers of response to fruquintinib	Change from baseline ctDNAChange from baseline CEA

STATISTICAL ANALYSIS

Key aspects of the planned analyses for OS and PFS

- Kaplan-Meier method will be used to summarize the data;
- Two-sided p-value will be calculated using a stratified logrank test accounting for randomization stratification factors;
- HR and its 95% confidence interval will be obtained from a Cox proportional hazard model;
- A fixed-sequence (hierarchical) testing procedure will be used to control the overall type I error rate at 0.05;
- Sensitivity and subgroup analysis will be conducted to evaluate the robustness and consistency of the results from the primary analysis.

PARTICIPATING CENTERS

Europe, Japan and Australia

DISCLOSURES

W Schelman, S Nanda, C Chien, and M Kania are employed by Hutchison MediPharma

The affiliate institutions of A Dasari, A Sobrero, T Yoshino, Tabernero, and C Eng receive grant support from Hutchison MediPharma to conduct this study.

J Yao is a consultant for Hutchison MediPharma

ACKNOWLEDGMENT We would like to thank all patients and

families who participated in this trial;

We would like to thank all investigators, study coordinators and the entire project team;

We would like to acknowledge the sponsor for this trial: Hutchison MediPharma.

References

- 1. Sun et al, *Cancer Biol Ther*. 2014;15(12):1635–45.
- 2. Li et al. *J Clin Oncol*. 2014;32(15 suppl):3548.
- Wang-Gillam et al. *Ann Oncol.* 2019;30(suppl_5):v159-v193.
 Dasari et al. *Ann Oncol.* 2020;31(suppl_4):S436-S437.
- (suppl_5):v159-v193. _4):S436-S437.

American Society for Clinical Oncology | 2021 Gastrointestinal Symposium | January 15-17, 2021 | Virtual