Subgroup Analysis of Patients With Metastatic Colorectal Cancer Treated With Fruquintinib in the FRESCO Trial Who Had Liver Metastasis

Shukui Qin, Jin Li, Rui-Hua Xu, Lin Shen, Jianming Xu, Yuxian Bai, Yanhong Deng, Lei Yang, Zhen-dong Chen, Haijun Zhong, Hongming Pan, Weijian Guo, Yongqian Shu, Ying Yuan, Jianfeng Zhou, Nong Xu, Tianshu Liu, Dong Ma, Changping Wu, Ying Cheng, Donghui Chen, Wei Li, Sanyuan Sun, Zhuang Yu, Peiguo Cao, Haihui Chen, Jiejun Wang, Shubin Wang, Hongbing Wang, Xia Qin, Ning Wang, Bin Zhang, Songhua Fan, Xiaojun Guo, Mengye Peng

2019 CSCO Xiamen

Disclosure

- For presenter: No conflict of interest
- FRESCO trial was co-funded by Eli Lilly and Company and Hutchison MediPharma, a subsidiary of Hutchison China MediTech

Background and Objective

- CRC is the fourth leading cause of cancer mortality in the world¹ and is the second most common cancer type in China²
- The development of metastases is the main cause of death in patients with CRC; about 70% of patients with CRC develop liver metastases during the course of their disease^{3,4}
- Fruquintinib is a highly selective and potent small molecule oral inhibitor of VEGF receptors 1, 2, and 3⁵
 - In the phase 3 FRESCO trial, fruquintinib demonstrated a statistically significant and clinically meaningful OS benefit in third-line mCRC patients in China, and the safety profile was consistent with that of its class⁶
- The aim of the present subgroup analysis is to determine the benefit of fruquintinib in mCRC patients associated with liver metastasis who were receiving third-line or posterior-line treatment

Abbreviations: CRC=colorectal cancer; mCRC=metastatic colorectal cancer; OS=overall survival; VEGF=vascular endothelial growth factor

4. Welch JP, et al. Ann Surg. 1979;189(4):496-502
5. Zhou S, et al. Cancer Chemother Pharmacol. 2017;80(3):563-73
6. Li J, et al. JAMA. 2018;319(24):2486-96

Figure 1. Study Design (FRESCO Trial¹)

Overall Survival

Progression-Free Survival

Abbreviations: BSC=best supportive care; mCRC=metastatic colorectal cancer; PD=progressive disease; QD=once daily; R=randomization; RECIST=Response Evaluation Criteria In Solid Tumors ¹Li J, et al. *JAMA*. 2018;319(24):2486-96.

Methods

Key Inclusion Criteria

- Histologically and/or cytologically diagnosed with mCRC (Stage IV)
- Had tumor progression after treatment regimens with fluropyrimidine, oxaliplatin, and irinotecan
- Prior anti-VEGF- or anti-EGFR-targeted therapy allowed but not mandatory
- Aged 18-75 years, ECOG performance status 0-1, life expectancy ≥3 months
- Measurable disease according to RECIST v1.1
- Adequate bone marrow, liver, and renal function

Subgroup Analysis Endpoints

• Efficacy:

- Overall survival
- Progression-free survival
- Tumor response (ORR/DCR)
- Safety:
 - Treatment-emergent hepatotoxicity (by CTCAE grades and laboratory abnormalities)

Statistical Analyses

- OS and PFS evaluated by Kaplan-Meier method
- Hazard ratio estimated through Cox proportional hazards model; p-value generated from log-rank test
- ORR and DCR compared using Cochran-Mantel-Haenszel test
- Hepatic AEs evaluated by the standardized MedDRA queries of hepatic failure, fibrosis, cirrhosis, and other liver damage-related conditions
 - According to whether patient had liver metastasis at baseline and AEs were categorized by CTCAE grades

Results

Table 1. Demographic and Baseline Disease Characteristics

	Patients With Liver Metastasis		Patients Without I	Patients Without Liver Metastasis		
Variables	Fruquintinib+BSC (N=185)	Placebo+BSC (N=102)	Fruquintinib+BSC (N=93)	Placebo+BSC (N=36)		
Age group, n (%)						
<65 years	148 (80.0)	83 (81.4)	80 (86.0)	27 (75.0)		
≥65 years	37 (20.0)	19 (18.6)	13 (14.0)	9 (25.0)		
Gender, n (%)						
Male/female	109 (58.9)/76 (41.1)	74 (72.5)/28 (27.5)	49 (52.7)/44 (47.3)	23 (63.9)/13 (36.1)		
ECOG performance status, n (%)					
0	53 (28.6)	31 (30.4)	24 (25.8)	6 (16.7)		
1	132 (71.4)	71 (69.6)	69 (74.2)	30 (83.3)		
Primary site at the time of diag	jnosis, n (%)					
Left*	137 (74.1)	85 (83.3)	77 (82.8)	30 (83.3)		
Right**	42 (22.7)	15 (14.7)	14 (15.1)	6 (16.7)		
Both left and right	4 (2.2)	0	0	0		
Metastatic site, n (%)						
Single	7 (3.8)	3 (2.9)	6 (6.5)	1 (2.8)		
Multiple	178 (96.2)	99 (97.1)	87 (93.5)	35 (97.2)		
Stage of disease at the time of	diagnosis, n (%)					
I. I.	4 (2.2)	4 (3.9)	4 (4.3)	0		
II	22 (11.9)	8 (7.8)	12 (12.9)	10 (27.8)		
III	65 (35.1)	35 (34.3)	53 (57.0)	16 (44.4)		
IV	93 (50.3)	53 (52.0)	24 (25.8)	10 (27.8)		
Time from first metastasis diag	gnosis to randomization (month	s)				
Mean (SD)	18.15 (12.2)	18.18 (11.9)	20.46 (14.3)	27.34 (19.2)		
Median (min, max)	15.18 (2.1, 61.6)	14.74 (1.9, 63.6)	17.68 (0.9, 79.0)	23.03 (4.0, 81.6)		
Prior use of VEGF inhibitors, r	ı (%)					
Yes	53 (28.6)	27 (26.5)	31 (33.3)	13 (36.1)		
Prior use of EGFR inhibitors, r	n (%)					
Yes	32 (17.3)	16 (15.7)	8 (8.6)	3 (8.3)		
K-RAS gene status, n (%)						
Wild type	111 (60.0)	57 (55.9)	46 (49.5)	17 (47.2)		
Mutant type	74 (40.0)	45 (44.1)	47 (50.5)	19 (52.8)		
Prior treatment lines on or abo	ove metastatic disease, n (%)					
≤3	149 (80.5)	80 (78.4)	72 (77.4)	27 (75.0)		
>3	36 (19.5)	22 (21.6)	21 (22.6)	9 (25.0)		

* Left region includes splenic flexure, descending, transverse, and sigmoid colon, and rectum

** Right region includes cecum, ascending colon, and hepatic flexure

Abbreviations: BSC=best supportive care; ECOG=Eastern Cooperative Oncology Group; EGFR=anti-epidermal growth factor receptor; max=maximum; min=minimum; SD=standard deviation; VEGF=vascular endothelial growth factor

Figure 2. Overall Survival in Patients With or Without Liver Metastasis (ITT Population)

Patients With Liver Metastasis

Patients Without Liver Metastasis

CSC

	Fruquintinib + BSC (N=185)	Placebo + BSC (N=102)	Fruquintinib + BSC (N=93)	Placebo + BSC (N=36)	
Median, months (95% Cl)	8.61 (7.46, 10.38)	5.98 (4.80, 7.13)	10.81 (7.75, 13.44)	9.13 (6.70, 10.32)	
HR (95% CI)	0.59 (0.45, 0.77)		0.75 (0.46, 1.21)		
p-value	<.001		.240		

p-value is based on log-rank test

Abbreviations: BSC=best supportive care; CI=confidence interval; HR=hazard ratio; ITT=intent-to-treat

Figure 3. Progression-Free Survival in Patients With or Without Liver Metastasis (ITT Population)

Patients With Liver Metastasis

Patients Without Liver Metastasis

CSC

	Fruquintinib +	Placebo +	Fruquintinib +		Placebo +	
	BSC (N=185)	BSC (N=102)	BSC (N=93)		BSC (N=36)	
Median, months	3.71	1.84		3.94	1.84	
(95% CI)	(3.65, 3.81)	(1.81, 1.84)		(3.35, 5.55)	(1.81, 1.87)	
HR (95% CI)	0.22 (0.17, 0.30)			0.34 (0.22, 0.53)		
p-value	<.001			<.001		

p-value is based on log-rank test

Abbreviations: BSC=best supportive care; CI=confidence interval; HR=hazard ratio; ITT=intent-to-treat

Table 2. Overall Survival Subgroups

Liver Metastasis	Fruquintinib	Placebo	Median Survi (95%	val, months Cl)	n-value	HR (95% CI)
Subgroup (Events/N) ((Events/N)	Fruquintinib	Placebo	- p value	
Lung metastasis						
Yes	78/104	52/62	8.57 (7.10, 9.95)	4.83 (3.88, 6.57)	.002	0.57 (0.40, 0.82)
No	56/81	33/40	9.76 (7.10, 10.71)	7.56 (5.55, 8.90)	.034	0.63 (0.41, 0.97)
Prior targeted therapy						
Anti-VEGF or anti-EGFR	58/77	33/40	7.46 (6.87, 9.95)	5.65 (4.01, 8.38)	.012	0.57 (0.37, 0.89)
No anti-VEGF and no anti-EGFR	76/108	52/62	9.23 (7.82, 10.71)	6.47 (4.67, 8.02)	.005	0.60 (0.42, 0.86)
K-RAS status						
Wild type	78/111	45/57	10.38 (7.69,10.97)	5.98 (4.47, 7.98)	.001	0.55 (0.38, 0.79)
Mutated	56/74	40/45	7.46 (5.78, 8.90)	6.37 (3.88, 8.02)	.085	0.70 (0.46, 1.05)

HR and 95% CI are from unstratified Cox model and p-value is from unstratified log rank test

Abbreviations: CI=confidence interval; EGFR=epidermal growth factor receptor; HR=hazard ratio; N=number of planned patients; VEGF=vascular endothelial growth factor

Table 3. Response Rate

	Patients With Liver		Patients Without Liver		
	Metas	stasis	Metastasis		
	Fruquintinib + Placebo+		Fruquintinib +	Placebo +	
	BSC (N=185)	BSC (N=102)	BSC (N=93)	BSC (N=36)	
Best overall response, n (%)					
Complete response	0	0	1 (1.1)	0	
Partial response	9 (4.9)	0	3 (3.2)	0	
Stable disease	106 (57.3)	9 (8.8)	54 (58.1)	8 (22.2)	
Progressive disease	59 (31.9)	77 (75.5)	28 (30.1)	21 (58.3)	
Not assessable	11 (5.9)	16 (15.7)	7 (7.5)	7 (19.4)	
ORR, n (%)	9 (4.9)*	0	4 (4.3)	0	
DCR, n (%)	115 (62.2)**	9 (8.8)	58 (62.4)**	8 (22.2)	
Median DOS, months (95% CI)	5.5 (4.8, 5.5)	3.7 (3.1, 4.8)	5.7 (5.5, 7.4)	3.7 (2.8, 11.0)	

*p<.05, **p<.001, p-value (fruquintinib vs. placebo) based on Cochran-Mantel-Haenszel test

Abbreviations: BSC=best supportive care; CI=confidence interval; DCR=disease control rate; DOS=duration of stable disease; N=number of planned patients; n=number of patients; ORR=overall response rate

Table 4. Treatment-Emergent Hepatotoxicity (Safety Population)

	Patients With L	iver Metastasis	Patients Without Liver Metastasis		
Grade	Fruquintinib +	Placebo +	Fruquintinib +	Placebo +	
	BSC (N=185)	BSC (N=102)	BSC (N=93)	BSC (N=35)	
	n (%)	n (%)	n (%)	n (%)	
Any Grade	7 (3.8)	2 (2.0)	2 (2.2)	0	
Grade 1	5 (2.7)	1 (1.0)	0	0	
Grade 2	2 (1.1)	0	1 (1.1)	0	
Grade 3	0	1 (1.0)	1 (1.1)	0	
Grade 4	0	0	0	0	
Grade 5	0	0	0	0	

Abbreviations: BSC=best supportive care

Table 5. Treatment-Emergent HepaticLaboratory Abnormalities (Safety Population)

	Patients V Metas	Vith Liver stasis	Patients Without Liver Metastasis		
Characteristics	Fruquintinib + BSC (N=185) n (%)	Placebo + BSC (N=102) n (%)	Fruquintinib + BSC (N=93) n (%)	Placebo + BSC (N=35) n (%)	
AST/ALT >3x ULN and ≤5x ULN	18 (9.7)	5 (4.9)	1 (1.1)	1 (2.9)	
AST/ALT >5x ULN	10 (5.4)	3 (2.9)	2 (2.2)	0	
Total bilirubin >2x ULN	30 (16.2)	10 (9.8)	1 (1.1)	1 (2.9)	
AST/ALT >3x ULN and total bilirubin >2x ULN	14 (7.6)	1 (1.0)	0	1 (2.9)	
Hy's law laboratory criteria*	1 (0.5)	0	0	0	

*AST/ALT >3x ULN, total bilirubin >2x ULN and ALP <2x ULN.

Abbreviations: ALP=alkaline phosphatase; ALT=alanine aminotransferase; AST=aspartate aminotransferase; BSC=best supportive care; ULN=upper limit of normal.

Summary of Results

Efficacy:

- In patients with liver metastasis, treatment with fruquintinib demonstrated a significant survival improvement as compared to placebo
 - Median OS: 8.61 vs. 5.98 months (HR=0.59, 95% CI: 0.45-0.77, p<.001)
 - Median PFS: 3.71 vs.1.84 months (HR=0.22, 95% CI: 0.17-0.30, p<.001)
- Fruquintinib conferred improvements over placebo in patients with liver metastasis for ORR (4.9% vs. 0%, p=029), DCR (62.2% vs. 8.8%, p<.001), and OS in liver metastasis subgroups

Safety:

 In patients with liver metastasis, treatment-emergent hepatic toxicities of any grade occurred in 7 (3.8%) patients in the fruquintinib group versus 2 (2.0%) in the placebo group

Abbreviations: CI=confidence interval; DCR=disease control rate; HR=hazard ratio; ORR=overall response rate; OS=overall survival; PFS=progression-free survival

Conclusions

- In this subgroup analysis, fruquintinib demonstrated a statistically significant increase in OS and PFS as compared with placebo in CRC patients with liver metastasis.
- The hepatotoxicity of fruquintinib was comparable with placebo in CRC patients with liver metastasis.

Author Affiliations

Author Names	Affiliations
Shukui Qin	Cancer Center of Jinling Hospital, Nanjing, China
Jin Li	Department of Medical Oncology, Tongji University Shanghai East Hospital, Shanghai, China
Jin Li / Weijian Guo	Department of Medical Oncology, Shanghai Medical College, Fudan University Shanghai Cancer Center, Shanghai, China
Rui-Hua Xu	Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China
Lin Shen	Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
Jianming Xu	The Fifth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
Yuxian Bai	Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
Yanhong Deng	Department of Medical Oncology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
Lei Yang	Department of Medical Oncology, Nantong Cancer Hospital, Nantong, China
Zhen-dong Chen	Department of Medical Oncology, The Second Hospital of Anhui Medical University, Hefei, China
Haijun Zhong	Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China
Hongming Pan	Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
Yongqian Shu	Department of Medical Oncology, Jiangsu Provincial Hospital, Nanjing, China
Ying Yuan	Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
Jianfeng Zhou	Department of Medical Oncology, Peking Union Medical College Hospital, Beijing, China
Nong Xu	Department of Medical Oncology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
Tianshu Liu	Department of Medical Oncology, Fudan University Zhongshan Hospital, Shanghai Medical College, Shanghai, China
Dong Ma	Department of Medical Oncology, Guangdong General Hospital, Guangzhou, China
Changping Wu	Department of Medical Oncology, The First People's Hospital of Changzhou, Changzhou, China
Ying Cheng	Department of Medical Oncology, Jilin Province Cancer Hospital, Changchun, China
Donghui Chen	Department of Medical Oncology, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai, China
Wei Li	Department of Medical Oncology, The First Hospital of Jilin University, Changchun, China
Sanyuan Sun	epartment of Medical Oncology, Xuzhou Central Hospital, Xuzhou, China
Zhuang Yu	Department of Medical Oncology, The Affiliated Hospital of Medical College Qingdao University, Qingdao, China
Peiguo Cao	Department of Medical Oncology, The Third Xiangya Hospital of Central South University, Changsha, China
Haihui Chen	Department of Medical Oncology, Liuzhou Worker's Hospital, Liuzhou, China
Jiejun Wang	Department of Medical Oncology, Shanghai Changzheng Hospital, The Second Military Medical University, Shanghai, China
Shubin Wang	Department of Medical Oncology, Peking University Shenzhen Hospital, Beijing University, Shenzhen, China
Hongbing Wang	Department of Medical Oncology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou Medical College, Xuzhou, China 🕋
Xia Qin/Ning Wang/Bin Zhang	Lilly China Drug Development and Medical Affairs Center, Shanghai, China
Songhua Fan/Xiaojun Guo/ Mengye Peng	Hutchision MediPharma Limited, Shanghai, China