

HUTCHISON CHINA MEDITECH

JP Morgan Presentation 2019

January 2019 AIM/Nasdaq: HCM

Safe harbor statement & disclaimer

The performance and results of operations of the Chi-Med Group contained within this presentation are historical in nature, and past performance is no guarantee of future results.

This presentation contains forward-looking statements within the meaning of the "safe harbor" provisions of the U.S. Private Securities Litigation Reform Act of 1995. These forward-looking statements can be identified by words like "will," "expects," "anticipates," "future," "intends," "plans," "believes," "estimates," "pipeline," "could," "potential," "believe," "first-in-class," "designed to," "objective," "guidance," "pursue," or similar terms, or by express or implied discussions regarding potential drug candidates, potential indications for drug candidates or by discussions of strategy, plans, expectations or intentions. You should not place undue reliance on these statements. Such forward-looking statements are based on the current beliefs and expectations of management regarding future events, and are subject to significant known and unknown risks and uncertainties. Should one or more of these risks or uncertainties materialize, or should underlying assumptions prove incorrect, actual results may vary materially from those set forth in the forward-looking statements. There can be no guarantee that any of our drug candidates will be approved for sale in any market, or that any approvals which are obtained will be obtained at any particular time, or that any such drug candidates will achieve any particular revenue or net income levels. In particular, management's expectations could be affected by, among other things: unexpected regulatory actions or delays or government regulation generally; the uncertainties inherent in research and development, including the inability to meet our key study assumptions regarding enrollment rates, timing and availability of subjects meeting a study's inclusion and exclusion criteria and funding requirements, changes to clinical protocols, unexpected adverse events or safety, quality or manufacturing issues; the inability of a drug candidate to meet the primary or secondary endpoint of a study; the inability of a drug candidate to obtain regulatory approval in different jurisdictions or gain commercial acceptance after obtaining regulatory approval; global trends toward health care cost containment, including ongoing pricing pressures; uncertainties regarding actual or potential legal proceedings, including, among others, actual or potential product liability litigation, litigation and investigations regarding sales and marketing practices, intellectual property disputes, and government investigations generally; and general economic and industry conditions, including uncertainties regarding the effects of the persistently weak economic and financial environment in many countries and uncertainties regarding future global exchange rates. For further discussion of these and other risks, see Chi-Med's filings with the U.S. Securities and Exchange Commission and on AIM. Chi-Med is providing the information in this presentation as of this date and does not undertake any obligation to update any forward-looking statements as a result of new information, future events or otherwise.

In addition, this presentation contains statistical data, third-party clinical data and estimates that Chi-Med obtained from industry publications and reports generated by third-party market research firms, including Frost & Sullivan, QuintilesIMS/IQVIA, independent market research firms, clinical data of competitors, and other publicly available data. All patient population, market size and market share estimates are based on Frost & Sullivan or QuintilesIMS/IQVIA research, unless otherwise noted. Although Chi-Med believes that the publications, reports, surveys and third-party clinical data are reliable, Chi-Med has not independently verified the data and cannot guarantee the accuracy or completeness of such data. You are cautioned not to give undue weight to this data. Such data involves risks and uncertainties and are subject to change based on various factors, including those discussed above.

Nothing in this presentation or in any accompanying management discussion of this presentation constitutes, nor is it intended to constitute or form any part of: (i) an invitation or inducement to engage in any investment activity, whether in the United States, the United Kingdom or in any other jurisdiction; (ii) any recommendation or advice in respect of any securities of Chi-Med; or (iii) any offer for the sale, purchase or subscription of any securities of Chi-Med.

No representation or warranty, express or implied, is made as to, and no reliance should be placed on, the fairness, accuracy, completeness or correctness of the information, or opinions contained herein. Neither Chi-Med, nor any of Chi-Med's advisors or representatives shall have any responsibility or liability whatsoever (for negligence or otherwise) for any loss howsoever arising from any use of this presentation or its contents or otherwise arising in connection with this presentation. The information set out herein may be subject to updating, completion, revision, verification and amendment and such information may change materially.

All references to "Chi-Med" as used throughout this presentation refer to Hutchison China MediTech Limited and its consolidated subsidiaries and joint ventures unless otherwise stated or indicated by context. This presentation should be read in conjunction with Chi-Med's interim results for the six months ended June 30, 2018 and Chi-Med's other SEC filings, copies of which are available on Chi-Med's website (<u>www.chi-med.com</u>).

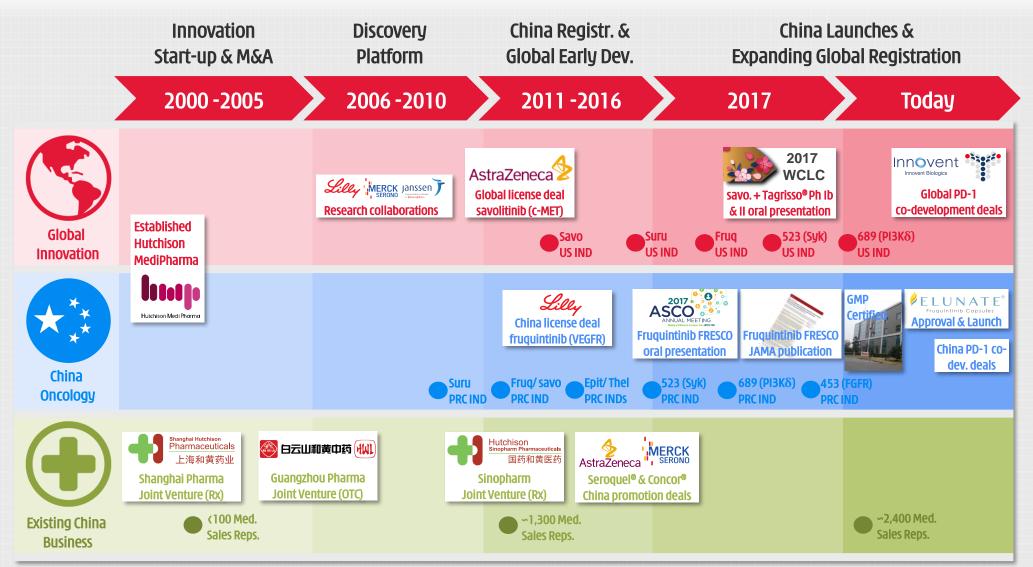
Use of Non-GAAP Financial Measures - Certain financial measures used in this presentation are based on non-GAAP financial measures. Please see the appendix slides titled "Non-GAAP Financial Measures and Reconciliation" for further information relevant to the interpretation of these financial measures and reconciliations of these financial measures.

Building a global science-focused biopharma company from a powerful base in China...

Global Innovation

- 5 clinical drug candidates in US/EU development
- Building global clinical development footprint
- World-class >400 person scientific team

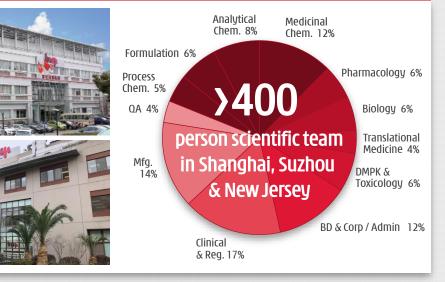
China Oncology


- Major market potential driven by regulatory reforms & high unmet medical need in oncology
- Elunate[®] (Fruquintinib capsules) first ever homegrown cancer drug launched in China^[1]
- 8 oncology assets in China development

Existing China Business

- Foundation of commercial expertise & capability
- Cash generative China pharma business

Important milestones in Chi-Med's evolution



Broad innovation & commercial operations

Management Team	Industry / Chi-Med (years)
Mr. CHRISTIAN HOGG, BSc, MBA Chief Executive Officer	Proceer & Gamble 29 / 18
Dr. WEIGUO SU, PHD EVP, Chief Scientific Officer	Pfizer 28 / 13
Mr. JOHNNY CHENG, BEC, CA Chief Financial Officer	Bristol-Myers Squibb Nesste 29 / 10
Dr. ZHOU JUN JIE, MD, MBA General Manager, SHPL	27 / 17
Dr. MAREK KANIA, MD, MBA SVP, Chief Medical Officer, US	Lilly 25/1
Dr. ZHENPING WU, PHD, MBA SVP, Pharmaceutical Sciences	Roche 24 / 10
Mr. CHEN HONG, BSc, MBA SVP, Chief Commercial Officer	Bristol-Myers 20 / 8
Dr. MAY WANG, PHD SVP, Bus. Dev. & Strategic Alliances	Lilly 24/8
Mr. MARK LEE, BEng, MBA SVP, Corp. Finance & Development	Credit Suisse 19/9
Mr. ENRICO MAGNANELLI, BA, MBA Head of International Operations	🧭 GILEAD 20/1

Integrated Innovation Organization^[1]

Commercial Team & Joint Ventures

ommercial Team (subsidiaries):

>200 staff covering:

- Drug distribution operations; &
- New Oncology Business Dept.

50/50 Joint Ventures:
2,400 Rx medical sales reps.;
1,000 person OTC sales team; &
1,200 staff in two major factories

[1] Headcount as of June 30, 2018; Chem. = Chemistry; DMPK = Drug, Metabolism, & Pharmacokinetics; Tox. = Drug Safety Evaluation; OA: Quality Assurance; Mfg. = Manufacturing; Reg. = Regulatory; BD = Business Development.

Portfolio of step-change global assets; near-term CHItargeted China NDA submissions & marketed drugs MED

Dose Finding / Safety	Dose Expansion / Proof-of-Concept	Registration	Marketed
Fruquintinib + sintilimab (PD-1) 1L Hepatocellular carcinoma (HCC) ^[1]	Savo / Savo + Imfinzi® (CALYPSO) x3: 2L clear cell RCC; PRCC	Savo + Tagrisso® (SAVANNAH) 2L/3L Tagrisso-refractory NSCLC	Elunate [®] (Fruquintinib capsules) ≥3L colorectal cancer
Surufatinib + toripalimab (PD-1) 2L pancreatic NET ^[1]	Savolitinib (NCI PAPMET) 1L/2L MET+ Papillary RCC	Savolitinib 1L Exon 14 NSCLC	SXBX Pill Coronary artery disease (FY'17: \$209m)
HMPL-523 (Syk) Indolent non-Hodgkin's Lymph. (NHL) ^[1]	Savo / Savo + Taxotere® (VIKTORY) x3: 2L gastric cancer	Fruquintinib + Taxol [®] (FRUTIGA) 2L gastric cancer	Seroquel[®] & Seroquel[®] XR Schizophrenia/biopolar (FY'17: \$35m)
HMPL-689 (ΡΙ3Κδ) Indolent NHL ^[1]	Savolitinib (CCTG 1234B) 1L/2L MET+ prostate cancer	Surufatinib (SANET-p) Pancreatic NET	Concor® Hypertension (FY'17: \$2m)
Fruquintinib + sintilimab (PD-1) 1L HCC ^[1]	Fruquintinib 3L/4L colorectal cancer	Surufatinib (SANET-ep) Non-pancreatic NET	>10 other Rx/OTC drugs (FY'17: >\$230m)
Fruquintinib + GB226 (PD-1) x2: 2L CRC; 2L NSCLC ^[1]	Surufatinib 2L pancreatic NET		
Surufatinib + toripalimab (PD-1) Pancreatic NET ^[1]	Fruquintinib + Iressa® 1L EGFRm+ NSCLC		
Surufatinib + HX008 (PD-1) TBD ^[1]	Surufatinib 2L Biliary tract cancer		Global Innovation
HMPL-453 (FGFR1/2/3) Solid tumors	Theliatinib EGFR wild-type esophageal cancer		China Oncology
Epitinib Glioblastoma	HMPL-523 x6: Indolent NHL; AML; ITP		Existing China Business
	HMPL-689		fruquintinib = VEGFR1/2/3; surufatinib = VEGFR/FGFR1/CSF-1R;

wild-type: HMPL-453 = FGFR1/2/3.

Indolent NHL

HMPL-523 = Syk; HMPL-689 = PI3Kδ; epitinib (HMPL-813) = EGFR with brain metastases; Theliatinib (HMPL-309) = EGFR

7

Global clinical drug portfolio (1/2)

Savolitinib Potential First-in-class small molecule selective c-MET inhibitor **Point of Differentiation:** No kidney toxicity (no 2-quinolinone metabolite) Point of Differentiation: Indications: MET-driven NSCLC; RCC; Gastric; Colorectal; Prostate cancer Indications: Dosed to-date: ~700 patients Dosed to-date: NSCLC - Tagrisso[®] EGFR TKI refractory combinations: **Post 1st-gen TKI** (n=34): ORR 55-61% **Post 3rd-gen TKI** (n=30): ORR 33% SAVANNAH global Summary Data: Summary Data: Ph.II/reg. underway PRCC (n=44): ORR 18%; mPFS 6.2mo. Tagrisso[®] + savo **IASLC 18TH WORLD CONFERENCE ON LUNG CANCER** October 15-18, 2017 | Yokohama, Japan Preliminary anti-tumour activity in all METpositive patients^{*}, n = 641.00No prior 3rd Gen T790M 100 directed EGFR-TKI Prior 3rd Gen T790N 75 **Objective response** directed EGFR-TKI T790M+ T790M-Total rate, n (%) (n = 30)(n = 11)(n = 23) (n = 64)50 ORR[†] 10 (33) 6 (55)

14 (61)

30 (47)

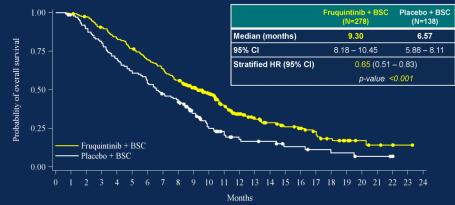
TATTON Part B

NCT0214346

Fruquintinib

Potential Best-in-class small molecule selective VEGFR 1/2/3 inhibitor

No off-target toxicity; full & sustained target coverage Colorectal; NSCLC; Gastric cancer


~1.550 patients in trials

Launched in CRC Nov 2018 in China

3L CRC (n=416): mOS 9.3mo. vs. 6.6mo. (SoC); 3L NSCLC (n=91): ORR 16%; mPFS 3.8mo. vs 1.1mo. (SoC) **1L NSCLC (Iressa[®] combo)** (n=50): ORR 77% ^[1] 2L Gastric (Taxol[®] combo) (n=28): ORR 36%

PRESENTED AT: ASCO ANNUAL MEETING '17

Overall Survival (Primary Endpoint) FRESCO clearly succeeded in meeting the primary efficacy endpoint of OS

[1] Efficacy Evaluable Patients. Data cut-off: Oct. 10, 2017.

Prior 3rd Gen T790M directed EGFR-TK

No prior 3rd gen EGFR-TKI, T790M+

No prior 3rd gen EGER-TKL T790M

% change from basel n tumour lesion size

25

-25 Best -50

Global clinical drug portfolio (2/2)

	Surufatinib		MPL-523	Н	MPL-689
Unique small molecule \	/EGFR 1/2/3, FGFR1 & CSF-1R inhibitor	Potential First selective Syk	t-in-class small molecule inhibitor	Potential Best- selective PI3K&	in-class small molecule
Point of Differentiation:	Angio-immuno kinase profile; angiogenesis & TAM ^[1] inhibition	POD:	No off-target toxicity; full & sustained target coverage	POD:	No off-target toxicity; full & sustained target coverage
Indications:	Neuroendocrine tumors (pNET/ep-NET); Thyroid; Biliary Tract	Indications:	Indolent non-Hodgkin's lymphoma; AML; Immunol.	Indications:	Indolent non-Hodgkin's lymphoma; AML; Immunol.
Dosed to-date:	∽600 patients Step-change	Dosed to-date	e: ~106 pts. & ~118 healthy vol.	Dosed to-date	∽31 pts. & ∽48 healthy vols.
Summary Data:	pNET (n=41): ORR 17%; mPFS 19.4mo. Ep-NET (n=40): ORR 15%; mPFS 13.4mo.	Summary Dat	Dose escalation (5 cohorts) ^[2] ta: FL (n=10): ORR 30% CLL/SLL (n=3): ORR 33%	Summary Data	Phase I dose escalation data not yet published
Progressi 10	14th Annual ENETS Conference 8-10 March 2017 on free survival in ITT patients as of 20 Jan2017	B-Cell Recepto	Rituxan®		IL-6 Receptor
- 8.0 Sd 10.6 - Alphop Hopp O.4 - 0.4 -	Parcreatic NET + Censored		PI3K8 BTK MTOP PLCy Zydelig [®] Imbruvica [®]		Jakafi®
0.2 - PN	patients: 16.6m (95% CI 13.4, 19.4) JET group: 19.4m (95% CI 13.8, 22.1) P-NET group: 13.4m (95% CI 7.6, 16.7)	TAK-659	HMPL-689Calquence®umbralisibzanubrutinib	NF-KB	Pro-inflammatory
0.0 - 1	3 6 9 12 15 18 21 24 Time (months)		Major unmet medical ne	ed	<u>cytokines</u>

in BTK TKI refractory iNHL

[1] TAM = Tumor Associated Macrophages; [2] American Society of Hematology. Blood, vol. 132 no. Suppl 1 5324 (Nov 2018).

9

Highlights & Strategies – Global Innovation Pushing the envelope on our most valuable assets

One of China's largest & most prolific discovery platforms in oncology

Global step-change innovation

• Multiple potential first-in-class assets

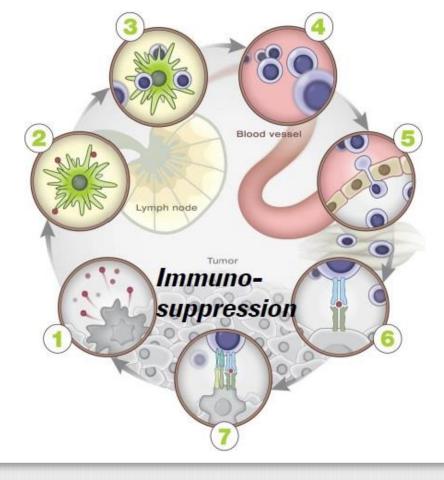
Kinase selectivity – enable combos

• Dial out off-target toxicity & address TKI resistance

Building broad range of assets against novel targets

• 2nd generation I/O & expanding to mAbs

Attack cancer from multiple angles at same time


Immune Desert Insufficient T cell response

- Chemotherapies
- Vaccines
- CAR-T (pro-inflammatory strategies)
- TCB's

17

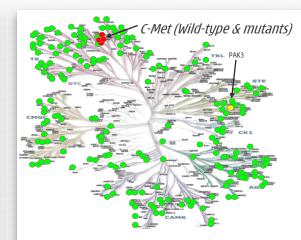
Antigen Release

- Aberrant genetic drivers
- Targeted therapies (small molecule & antibody)

Excluded Infiltrate Inadequate T cell homing

- Anti-angiogenics
- Stromal targets
- Chemokines
- Vaccines

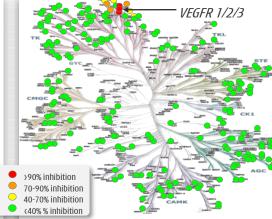
Inflamed


Inactivated T cell response

- Immunotherapies (address negative regulators)
- Vaccines

Need combinations of potent, yet tolerable drugs against specific targets

Our advanced medicinal chemistry provides superior selectivity & safety profiles...



13

Savolitinib

∽1,000 times more selective to c-Met than next kinase (PAK3) ^[5]

> Screening at 1µM against 253 Kinases

Fruquintinib Capsules ~250 times more selective to VEGFR3 than next non-

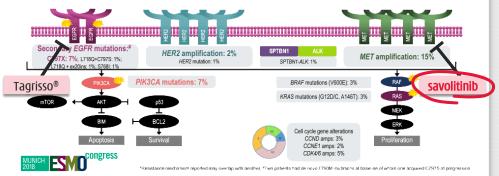
VEGFR kinase (Ret) [6]

	Disco	Discontinuations as % Enrolled				
Non-small cell lung cancer (NSCLC)	Due to AE	Withdrawn / Other	Total ^[1]			
Monotherapy – Tagrisso® / savolitinib						
Tagrisso® (osimertinib)	6%	6%	13%			
savolitinib 600mg QD monotherapy [2]	9%	5%	14%			
Combination - Tagrisso® + savolitinib						
savolitinib 600mg QD + Tagrisso® [3]	30%	3%	33%			
savolitinib 600mg QD + Tagrisso® [3]	50%	J %	22%			
Approved treatments in NSCLC						
Zykadia® (ceritinib)	10%	10%	20%			
Cyramza® (ramucirumab) + Taxotere®	15%	21%	37%			
Keytruda® (pembrolizumab) 2mg/kg	10%	26%	37%			
Opdivo® (nivolumab)	15%	4%	20%			
Chemo doublet (platinum + pemetrexed)	11%	17%	27%			
Taxotere® (docetaxel)	13%	22%	36%			

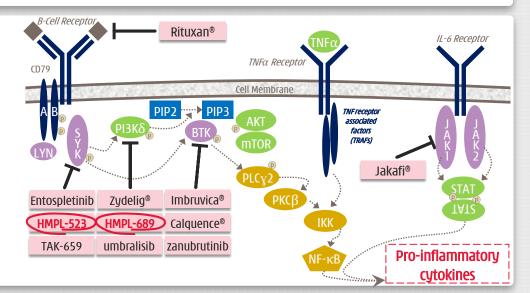
3 rd -Line Metastatic CRC) Study nd China	CONCUI (China, HK,	
Treatment arms	Elunate®	Placebo	Stivarga ®	Placebo
VEGFR on-target related AEs:				
Hypertension ≥G3	21.2%	2.2%	12.5%	8.3%
Hand-Foot Syndrome (Palmar-plantar), ≥G3	10.8%	0.0%	17.0%	0.0%
Off-target (i.e. non-VEGFR) related AEs:				
Hypophosphatemia, ≥G3	0.0%	0.0%	8.0%	0.0%
Hypokalemia, ≥G3	0.7%	0.7%	6.3%	0.0%
Rash/desquamation, ≥G3	0.0%	0.0%	4.4%	0.0%
Lipase increase, ≥G3	0.0%	0.0%	6.3%	1.7%
Hepatic function (Liver function) AEs:				
ALT increased, \geq G3	0.7%	1.5%	7.1%	3.3%
AST increased, ≥G3	0.4%	0.7%	8.9%	0.0%
Blood bilirubin increased, ≥G3	1.4%	1.5%	8.9%	8.3%
Tolerability:	\frown			
AE Leading to dose interruption	35.3%	10.2%	68.8%	25.0%

[1] Total discontinuations = Discontinuations NOT due to Disease Progression or Death; [2] September 2017 Journal of Clinical Oncology; [3] 2017 World Conference on Lung Cancer; [4] Efficacy & safety of regorafenib monotherapy in Chinese patients with previously treated metastatic colorectal cancer: subgroup analysis of the CONCUR trial; R Xu; [5] W. Su, et al, 2014 American Association of Cancer Research; [6] Sun et al., Cancer Biology & Therapy 15:12, 1635-1645; December 2014.

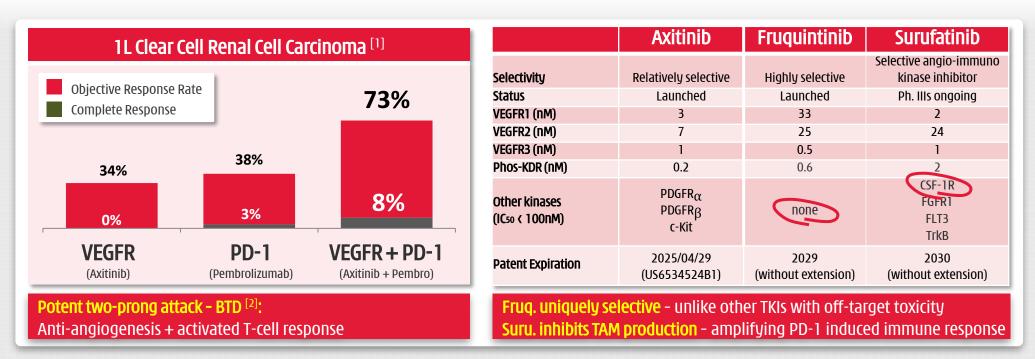
...**Superior safety allows for combinations** TKI + TKI combos to address acquired resistance



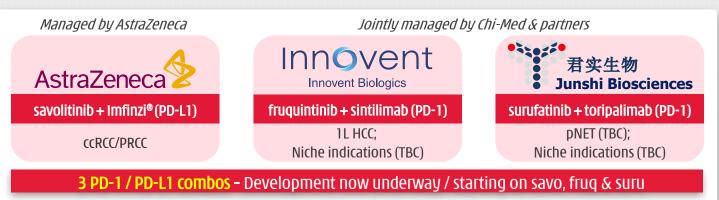
- MET amplification is the most common resistance mechanism for Tagrisso[®];
- Requires addition of MET inhibitor savolitinib – in combo with Tagrisso[®]


RESULTS: CANDIDATE ACQUIRED RESISTANCE MECHANISMS WITH OSIMERTINIB (n=91)*

- No evidence of acquired EGFR T790M
- The most common resistance mechanisms were *MET* amplification and EGFR C797S mutation • Other mechanisms included *HER2* amplification, *PIK3CA* and *RAS* mutations



- C481S or PLC_γ are the most common resistance mechanisms for Imbruvica[®];
- Invalidating BTK inhibitor requires a possible Syk, PI3Kδ &/or BTK TKIs


...our assets are ideal TKI combo partners for immunotherapy

Multiple global immunotherapy combo deals...

15

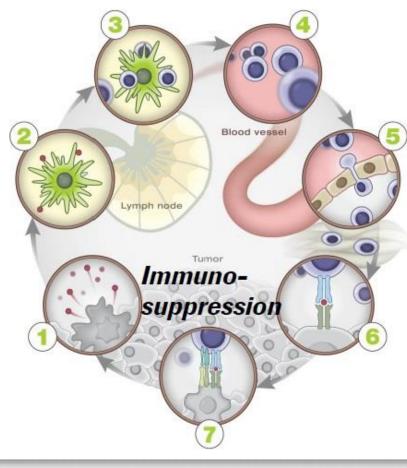
[1] Source: 1. B. Rini et al, Lancet Oncol 2013 14(12) 1233-42, Axitinib with or without dose titration for first-line metastatic renal-cell carcinoma: a randomised double-blind phase 2 trial; 2. D.F. McDermott et al, ASCO 2018 #4500, Pembrolizumab monotherapy as first-line therapy in advanced clear cell renal cell carcinoma; a randomised double-blind phase 2 trial; 2. D.F. McDermott et al, ASCO 2018 #4500, Pembrolizumab monotherapy as first-line therapy in advanced clear cell renal cell carcinoma; a randomised double-blind phase 2 trial; 2. D.F. McDermott et al, ASCO 2018 #4500, Pembrolizumab monotherapy as first-line therapy in advanced clear cell renal cell carcinoma (accRCC): Results from cohort A of KEYNOTE-427; 3, M.B. Atkins et al, Lancet Oncol 2018 19(3) 405-15, Axitinib in combination with pembrolizumab in patients with advanced renal cell cancer: a non-randomised, open-label, dose-finding, and dose-expansion phase 1b trial. Corporate press release; [2] BTD = Breakthrough Therapy Designation.

5 assets in global development ...US/EU clinical & regulatory team fully operational

Program	Treatment	Indication	Target patient	Study name	Sites	Dose finding / safety run-in	Proof-of-concept R	registration
	Savolitinib + Tagrisso®	NSCLC	2L/3L EGFRm; Tagrisso [®] ref.; MET+	SAVANNAH	Global	Oxnard/Ahn – DF/SMC		p_172
	Savolitinib	NSCLC	MET Exon 14 deletion	TBD	TBD	TBD		N=172
	Savolitinib + Imfinzi® (PD-L1)	Papillary RCC	All	CALYPSO	UK/Spain	Powles – Queen Mary's		
	Savolitinib	Clear cell RCC	VEGFR TKI refractory	CALYPSO	UK/Spain	Powles – Queen Mary's		Prelim. PoC at
Savolitinib	Savolitinib + Imfinzi® (PD-L1)	Clear cell RCC	VEGFR TKI refractory	CALYPSO	UK/Spain	Powles – Queen Mary's		nf. early 2019
c-MET	Savolitinib	Papillary RCC	All	PAPMET	US	Pal – City of Hope		_
	Savolitinib	Gastric cancer	MET+	VIKTORY	South Korea	Lee – Samsung Med. Ctr		
	Savolitinib + docetaxel	Gastric cancer	MET+	VIKTORY	South Korea	Lee – Samsung Med. Ctr	F F	Prelim. PoC at
	Savolitinib + docetaxel	Gastric cancer	MET over expression	VIKTORY	South Korea	Lee – Samsung Med. Ctr	C	onf. mid 2019
	Savolitinib	Prostate cancer	MET+	CCGT 1234B	Canada	Kolinsky/Muk'jee/Ong/Chi		
	_						Planr	ning US registr.
Fruquintinib	Fruquintinib	Colorectal cancer	3L/4L; Stivarga [®] ref./intolerant		US	Eng – MD Anderson		dy based on
VEGFR 1/2/3	Fruquintinib + sintilimab (PD-1)	Hepatocellular ca.	1L		US	TBD	FRE	SCO/US Ph.Ib
	_						Dianni	
	Surufatinib	Pancreatic NET	2L; Sutent [®] /Afinitor [®] refractory		US	Dasari/Yao - MD Anderson		ased on China
VEGFR 1/2/3; FGFR1; CSF-1R	Surufatinib + toripalimab (PD-1)	Pancreatic NET				TBD		II/US Ph.Ib
	_							
HMPL-523	HMPL-523	Indolent NHL			Australia	N/A	Global	Ph.I/PoC data-
Syk	HMPL-523	Indolent NHL			US	Fowler - MD Anderson	set no	ow at n >100
ΗΜΡL-689 ΡΙ3Κδ	HMPL-689	Healthy volunteers Indolent NHL			Australia	Chorth/Cohon Latina/Emery		wemerging in
РІЗКО	HMPL-689				US	Ghosh/Cohen - Levine/Emory	China P	h.I (n ∽30)

2019-2021 Objectives: (1) Savo/Tagrisso approved & savo monotherapy registration study underway; (2) Fruq; suru; HMPL-523 & HMPL-689 registration studies underway/enrolling

What is next from discovery? Differentiated assets against multiple targets to emerge 2019-22


Priming & activations aOX40 4-1BB

Antigen release

- c-MET (savolitinib)
- EGFR (epitinib/theliatinib)
- Syk (HMPL-523)
- PI3Kδ (HMPL-689)
- FGFR (HMPL-453)

• ERK

RIP1KIDH

<u>Anti-angiogenesis</u>

- VEGFR (fruquintinib)
- VEGFR/FGFR (surufatinib)
- FGFR (HMPL-453)

Negative regulators

- Treg (HMPL-689)
- CSF-1R (surufatinib)
- IDOi
- AhRi
- TIM3
- TCBS

Pre-clinical - small molecule
 Pre-clinical - antibody

Creating highest-quality range of assets against novel targets for use in combos

Global Innovation Plans for 2019-2021

Aim for Savolitinib / Tagrisso® combo approval & launch

Build out US/EU development operation

 US/EU C&R operation set up in Morris County, NJ in 2018; expected to reach ~30 staff by end 2019

Accelerate development of 4 un-partnered global assets

- Fruq & suru registration studies & exploration of combos with PD-1s;
- Syk & PI3K δ registration studies & exploration of combos with BTK TKIs

S Aim to move ~1 novel drug candidate into global development per year

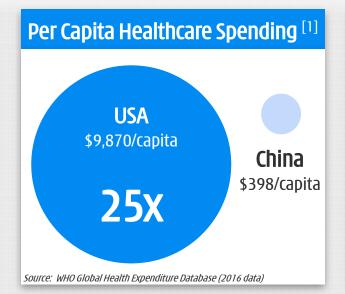
China oncology – ~30% of world's cancer patients

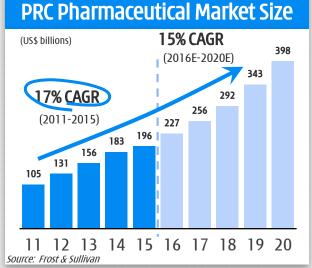
World's attention turning to unmet medical need in China oncology

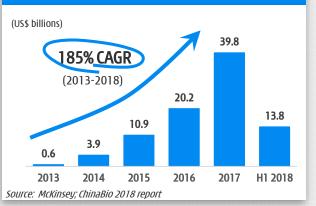
- Regulatory reforms in China addressing low SoC [1]
- Major investment inflow

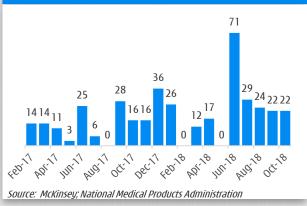
Chi-Med is a first mover

- Elunate[®] launch in 3L mCRC; First ever in China^[2]
- Deep pipeline 8 clinical drug candidates with 5 registration studies underway/set to start in China

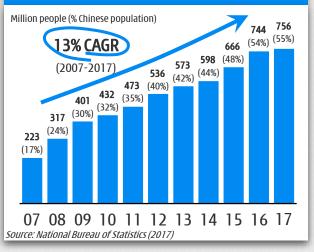

Major commercial opportunity


• National Drug Reimbursement; Medical coverage


China now world's 2nd largest pharma market ...investment, approvals & access all accelerating rapidly



PRC Healthcare VC/PE Funds^[3]

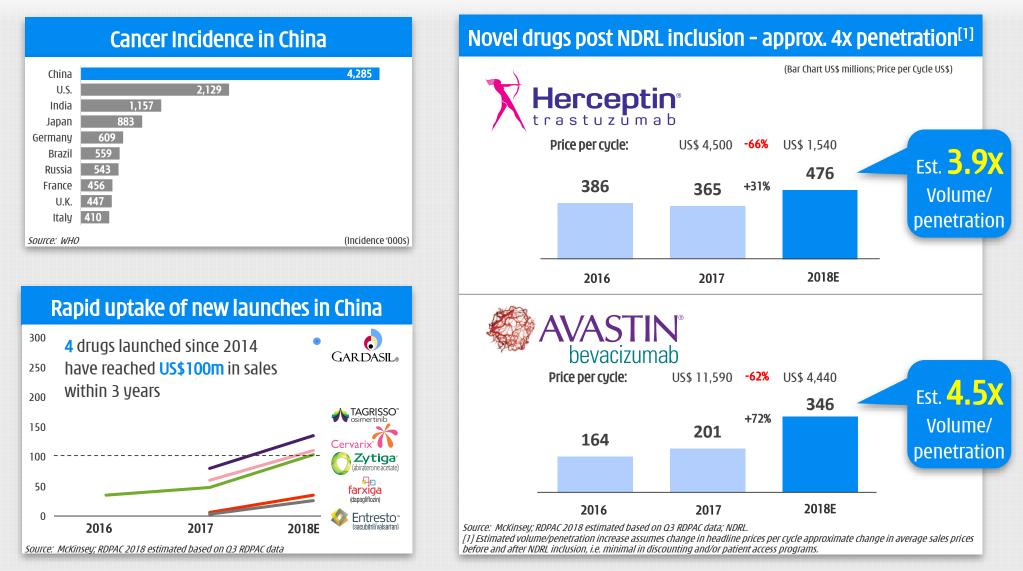


21

Number of Priority Review NDAs ^[4]

Medical Insurance Coverage^[2]

Improved Access since 2017


- 128 western drugs added to NDRL;
- Further 17 oncology drugs added to NDRL in Oct 2018 (15 in Jul 2017);
- Essential drug list expanded from 520 to 685 molecules. Including oncology.

Source: McKinsey

[1] Current health expenditure by revenues of health care financing schemes (in current US\$ per capita); [2] Urban Basic Medical Care Insurance (for both employees & residents) - total persons covered at year-end; [3] Funds raised; [4] NDA = New Drug Application. Note: CAGR = Compound annual growth rate

Cancer is a major unmet need in China ... investments in launches/access starting to have an impact

上市会

ELUNATE Fruquintinib Capsules

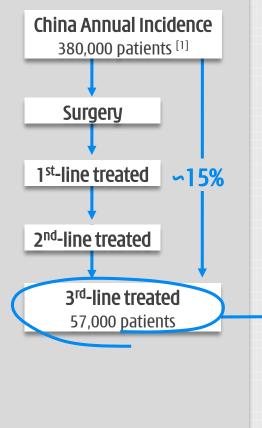
95% CI(月 8.18-10.4

5 88-8 11

Launched - Nov. 25, 2018

曾休 若°+BS 日間和+BSC -0.831 P < 0.001 9.30月 1.87个月

23


First ever oncology drug discovered & launched in China ^[1]

3rd-line colorectal cancer ("CRC")

1. Epidemiology

2. Price / Usage

Pricing RMB 21,960 per cycle (~US\$ 3,300 per cycle) (one cycle 4 weeks)

Patient Access Program^[2]

Cycle 1: RMB 21,960 Cycle 2: RMB 21,960

Cycle 3: Free (PAP) Cycle 4: Free (PAP)

Cycle 5: RMB 21,960

Cycle 6 onwards: Free (PAP)

Progressive Disease

Usage ~Avg 5.0 mths / 5.5 cycles (to progression; 3.7 mo. mPFS^[3])

24 [1] W. Chen, R. Zheng et al, CA Cancer J Clin. 2016 Mar-Apr;66(2):115-32. Cancer Statistics in China, 2015. doi:10.3322/caac.21338. Epub 2016 Jan 25; [2] PAP = Patient Access Program, subject to qualification criteria; [3] mPFS = median Progression-Free Survival.

Lilly amendment – Dec 2018 Important deal on an outstanding asset

- We believe Elunate[®] is a global best-in-class VEGFR TKI;
- Unique selectivity potential in multiple new life cycle indications ("LCIs");
- We have been driving for over a year to gain freedom to operate on LCIs on our most valuable asset in China;
- Chi-Med & Lilly benefit from 2018 amendment CRE [1]

Chi-Med takes over all LCI decision making	Original 2013 Agreement	Amendment (Dec 2018)
LCI Development Costs – Paid by Lilly LCI Development Costs – Paid by Chi-Med	70% 30%	0% 100%
LCI Regulatory Approval Milestones – Paid to Chi-Med ^[3]	12.5	20.0
Royalty Payments – Paid to Chi-Med ^[4] Co-Promotion Rights in China (% of provinces)	15 - 20% 0%	30 - 40%
Co-Promotion Service Fees – paid to Chi-Med (% Net Sales)	0%	Not disclosed

More control & better economics on best-in-class asset

Drug	FDA Approved Indications		2017 Sales
(INN Name)	Indication	Year	2017 Sales
	2L bevacizumab-pret. mCRC	2013	
	1/2L mCRC	2004	
	1L non-sq NSCLC	2006	
Avastin®	2L GBM	2009	
(Bevacizumab)	1L ccRCC	2009	\$6,796m
(DevacizuitiaD)	1L Cervical Ca.	2014	
	1L Ovarian Ca.	2018	
	1/2L platinum-sens. Ovarian Ca.	2016	
	2/3L platinum-res. Ovarian Ca.	2014	
	2L GIST	2006	
Sutent®	≥1L pNET	2011	
(Sunitinib)	adjuvant RCC	2017	\$1,081m
(Juliunio)	1L RCC	2007	
	≥2L cytokine-ref. ccRCC	2006	
Vargatef® Ofev® (Nintedanib)	2L adeno-NSCLC (by EMA)	2014	\$1,076m ^[2]
Novavar®	≥1L RCC	2005	
Nexavar® (Sorafenib)	1L HCC	2007	\$923m
(Julielin)	lodine-ref. DTC	2013	
Votrient®	1/2L RCC	2009	\$808m
(Pazopanib)	2L STS	2012	\$000III
Cyramza®	2L GC	2014	
(Ramucirumab)	2L NSCLC	2014	\$758m
(Ramaciramab)	2L mCRC	2015	
Cometriq®	≥1L MTC	2012	
Cabometyx®	1L ccRCC	2017	\$406m
(Cabozantinib)	-	2016	
Stivarga®	3L mCRC	2012	
(Regorafenib)	2L GIST	2013	\$349m
	2L HCC	2017	
Inlyta® (Axitinib)	2L ccRCC	2012	\$339m
Lenvima®	lodine-ref. DTC	2015	\$296m
(Lenvatinib)	2L ccRCC	2016	≱ 270111

25 [1] CRE = Commercially Reasonable Effort - Lilly obligation to maximize sales & profit of Elunate; [2] Includes sales for idiopathic pulmonary fibrosis; [3] Lifecycle Indication - China - per LCI, up to 3 LCIs; [4] on Total Molecule Sales in China triggered upon launch of 1st LCI.

8 assets in China development (1/2) ...where we are today & where we target to be in 3 years

Program	Treatment	Indication	Target patient	Study name	Sites	Dose finding / safety run-in Proof-of-concept	Registration
	Savolitinib	NSCLC	MET Exon 14 deletion		China	Lu Shun – SH Chest Hosp.	n ∽60
Savolitinib c-MET	Savolitinib + Iressa®	NSCLC	2L EGFRm; Iressa [®] ref.; MET+		China	Wu Yilong - GD General	
CHLI	Savolitinib	Gastric cancer	MET+		China	Shen Lin – BJ Univ. Tumor	Launched
	_						Nov 2018
	Fruquintinib	Colorectal cancer	≥3L; chemotherapy refractory	FRESCO	China	Li Jin – Fudan Univ.	
	Fruquintinib + genolimzumab (PD-1)	Colorectal cancer	2L		China	Bai Yuxian - HRB Tumor	
	Fruquintinib	NSCLC	3L; chemotherapy refractory	FALUCA	China	Lu Shun – SH Chest Hosp.	
Fruquintinib VEGFR 1/2/3	Fruquintinib + Iressa®	NSCLC	1L EGFRm		China	Lu Shun – SH Chest Hosp.	Publish 2019
1201112.5	Fruquintinib + genolimzumab (PD-1)	NSCLC	2L		China	Lu Shun – SH Chest Hosp.	Interim
	Fruquintinib + Taxol®	Gastric cancer	2L	FRUTIGA	China	Xu Ruihua – Sun Yat Sen	Early 2019
	Fruquintinib + sintilimab (PD-1)	Hepatocellular ca.	1L		China	Li Jin SH East Hosp.	Interim
	_						Late
	Surufatinib	Pancreatic NET	All		China	Xu Jianming – #5 Med. Ctr.	2019
Surufatinib	Surufatinib + toripalimab (PD-1)	Pancreatic NET	All		China	Shen Lin – BJ Univ. Tumor	Interim
VEGFR 1/2/3;	Surufatinib	Non-Pancreatic NET	All		China	Xu Jianming - #5 Med. Ctr.	Early
FGFR1; CSF-1R	Surufatinib	Biliary Tract cancer	2L		China	Xu Jianming - #5 Med. Ctr.	2019
	Surufatinib + HX008 (PD-1)	TBD	All		China	TBD	
							Planning China Ph.II/III Based on Ph.Ib data

2019-2021 Objectives: (1) Savo mono (Exon 14) launched; Savo / Tagrisso® or Iressa® combo launched;
(2) Fruq with multiple life cycle indications ("LCIs") in registration;
(3) Suru launched in neuroendocrine tumors & multiple LCIs.

8 assets in China development (2/2) ...where we are today & where we target to be in 3 years

Program	Treatment	Indication	Target patient	Study name	Sites	Dose finding / safety run-in	Proof-of-concept	Registration
Epitinib	Epitinib	NSCLC	EGFRm with brain metastasis		China	Wu Yilong – GD General		
EGFR	Epitinib	Glioblastoma	EGFR gene amplified		China	Ying Mao – SH Huashan		
	_							
Theliatinib	Theliatinib	Esophageal cancer	EGFR over expression		China	Shen Lin – BJ Univ. Tumor		
EGFR wt								
	HMPL-523 + azacitidine	Acute Myeloid Lymph.	1L		China	Wang/Qi – CN Hem. Hosp.		
	HMPL-523	CLL / SLL	All		China	Xu Wei – JS People's Hosp.		Planning China Ph.II/III in
HMPL-523	HMPL-523	Indol. NHL: FL; MZL; WM	All		China	Zhu Jun – BJ Cancer Hosp.		several iNHL indications
Syk	HMPL-523	Aggressive NHL: DLBCL	All		China	TBD		based on Ph.Ib data now at n >100
	HMPL-523	MCL	All		China	Cao – Fudan Univ. Tumor		dt 11 7 100
	HMPL-523	ITP	All		China	Yang – CN Hem. Hosp.		
	_							
HMPL-689	HMPL-689	Indolent NHL			China	Cao/Zhou – Fudan/Tongji	D	ata-set emerging in China
ΡΙ3Κδ								Ph.I (n ∽30)
	_							
HMPL-453	HMPL-453	All comers			China	Xu Ruihua – SYS		
FGFR 1/2/3								

2019-2021 Objectives: (1) HMPL-523/HMPL-689 - multiple non-Hodgkin's Lymph. registration studies; (2) Epitinib/Theliatinib/HMPL-453 established proof-of-concept

Note: Chronic lymphocytic leukemia (CLL), small lymphocytic lymphoma (SLL), mantle cell lymphoma (MCL), follicular lymphoma (FL), marginal zone lymphoma (MZL), diffuse large B-cell lymphoma (DLBCL) & Waldenstrom's macroglobulinemia (WG); immune thrombocytopenic purpura (ITP)

China Oncology Plans for 2019-2021

Establish Elunate[®] as the best-in-class VEGFR TKI in China market

- Work with Lilly to maximize penetration & sales performance;
- Aggressively expand PD-1 combination collaborations & broader LCI program

Launch our un-partnered oncology drugs

- Target surufatinib NDA in neuroendocrine tumors potentially in late 2019;
- Expand Oncology Commercial Org. from current ∽30 people to ∽200 by end 2020

Savolitinib NDA in MET Exon 14 NSCLC potentially in early 2020

Progress development pipeline

- Syk & PI3K δ into registration studies & establish PoC for epitinib, theliatinib & FGFR;
- Aim for 2-3 further novel drug candidates into early development by 2021

Existing China Business

30

Chi-Med spent 17 years building **China commercial presence**

- Valuable know-how in operating within the complex medical system in China
- Clear operating synergies with our novel oncology assets
- China operations/JVs have generated >\$500 million in Net Income since 2005

China pharma industry grew at circa. 15% CAGR over last 15 years & set to continue

• Aging population; rapid urbanization; economic development

Chi-Med's Commercial Platform in China Integrated platform built from ground up

2 National House-Hold Name Brands

Major Commercial & Production Scale

~2,400 RX & ~1,000 OTC
sales people in about 300 ^[1]
cities & towns in China.

Drugs in ~22,900 hospitals detailing ~106,000 doctors.

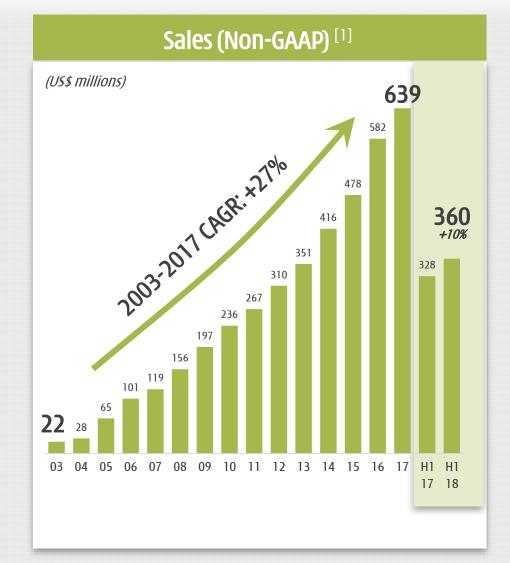
Sold ~4.6 billion doses of medicine in 2017.

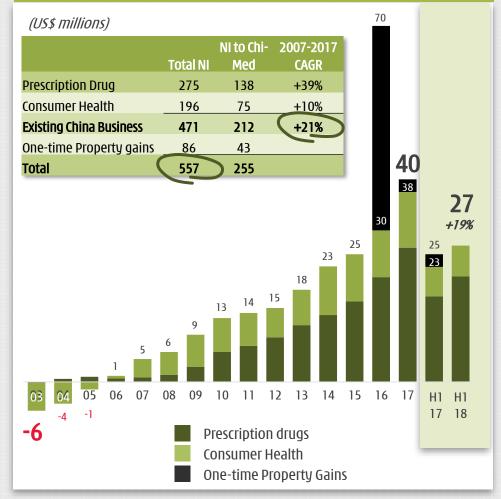
Leadership Market Shares

Market leader in the subcategories/markets in which we compete ^[2]:

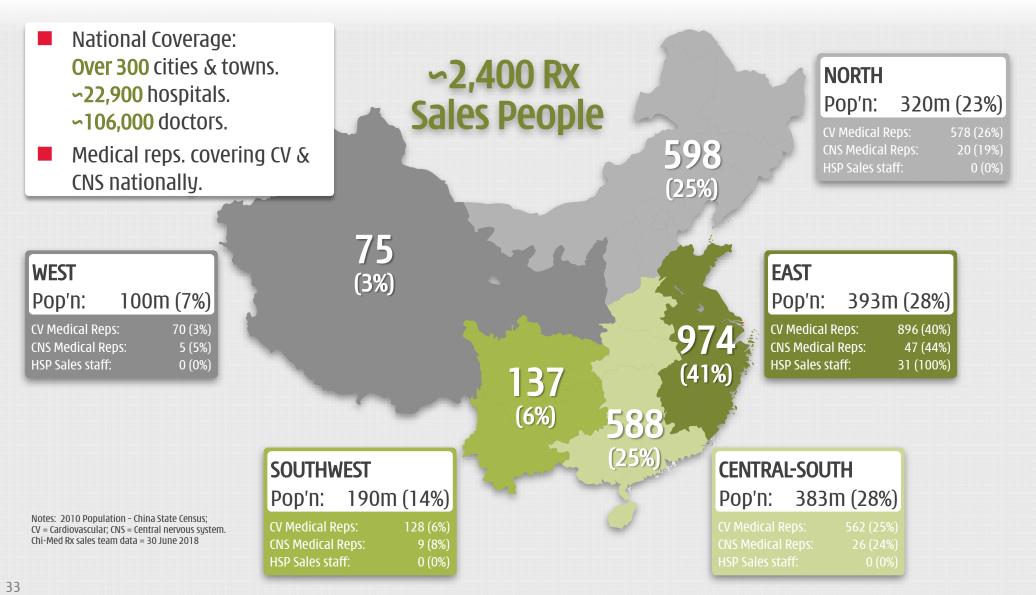
SXBX pill: ^{[3][4]}	∽1 5%
Rx Cardiovascular TCM	
Banlangen: ^[5]	∽ <mark>53%</mark>
OTC Anti-viral /flu TCM	
FFDS tablet: ^[6]	∽ <mark>38%</mark>
OTC Angina TCM	

JVs with 3 Major China Pharmas

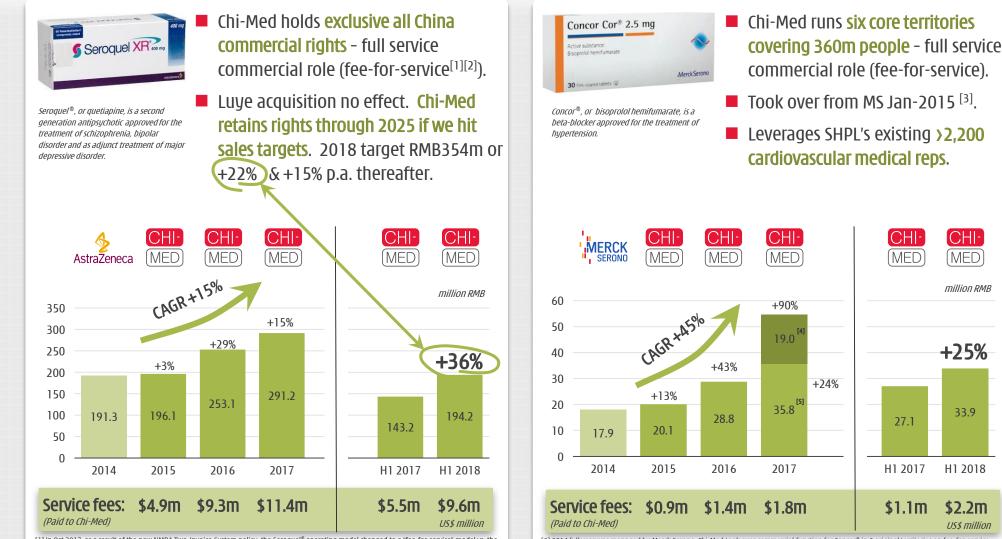



[1] 300 cities & towns covered by Prescription Drug Business and 600 cities & towns including OTC business; [2] Frost & Sullivan 2017 market share data; [3] China coronary heart disease oral Chinese patented drugs market share; [4] She Xiang Bao Xin Pill [3] ("SXBX pill"); [5] Banlangen Granules ("Banlangen") – OTC Antiviral; [6] Fu Fang Dan Shen tablets ("FFDS").

Chi-Med's Commercial Platform in China Proven track record of success – important source of cash



Net Income/(Loss) attrib. to Chi-Med


A powerful Rx Commercial Platform in China.... Chi-Med management run all day-to-day operations

...highly adaptable commercial platform 3rd party products – sales of Seroquel[®] & Concor[®] up significantly

^[1] IN Oct 2017, as a result of the new NMPA Two-Invoice System policy, the Seroquel® operating model changed to a "fee-for-service" model vs. the prior model in which Chi-Med consolidated the sales of Seroquel® -- the change has no material impact on net income earned; 121 2014 full vear and Q1 2015 were managed by AstraZeneca. Chi-Med took over commercial function for Seroquel® across all-China in April 2015.

[3] 2014 full year was managed by Merck Serono. Chi-Med took over commercial function for Concor[®] in 3 original territories on fee-for-service basis in Jan 2015; [4] Sales into 3 new territories (Tianjin, Anhui and Jiangsu) were added from 2017: RMB19.0 million; [5] 3 original territories (Shandong, Henan and Shanghai) contributed RMB35.8 million in 2017 (+24.3%).

Existing China Business Plans for 2019-2021

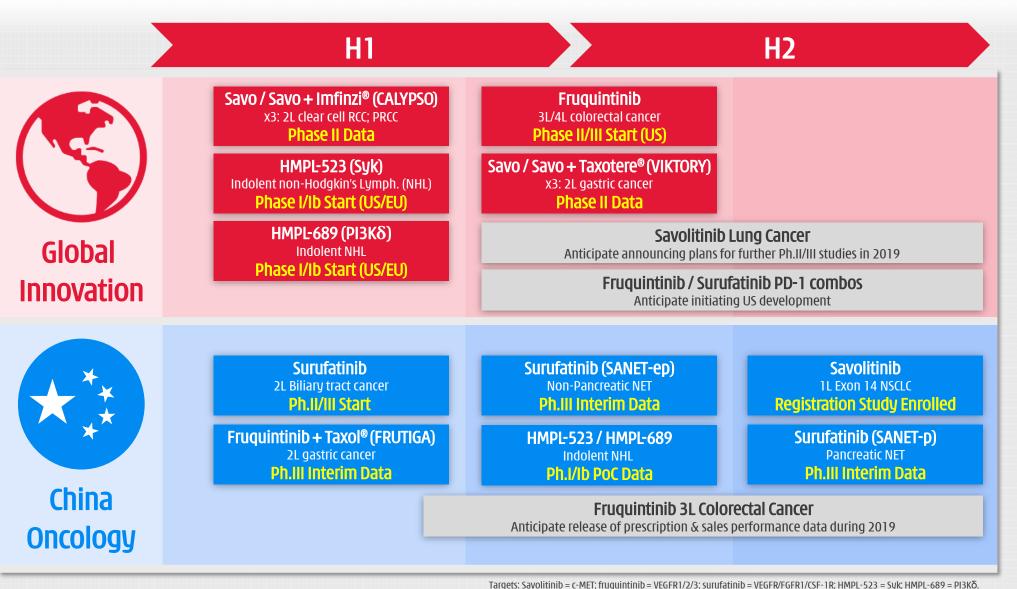
Continue organic growth

- Target high single-digit percentage growth in product sales;
- Focus on proprietary prescription drug products

Build out synergies with China Oncology Organization

Strategically evaluate potential for M&A

- Expand the scope & scale of our joint ventures
- Continue to evaluate potential for divestment of certain non-strategic assets

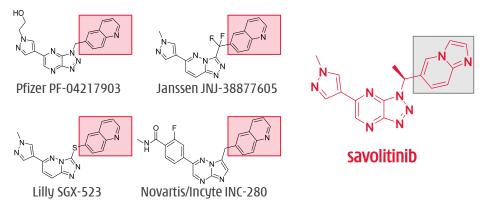

FY 2018 Guidance & June 30 Balance Sheet

	2017 Actual	2018 Guidance ^[5]	Chi-Med Net Cash
Revenues Innovation Platform Revenue Adj. R&D exp. (non-GAAP) ^[3]	\$241.2 36.0 (88.0) (52.0)	\$155 - \$175 40 - 50 (142) - (152) (92) - (112)	 \$322.5m cash equiv. 7 ST inv. ^[1] \$94.4m additional unutilized banking facilities ^[2]
Commercial Platform Sales (consolidated) Sales of non-consolidated JVs Net Income Adj. (non-GAAP) excl. one-time gains One-time gains ^[4] Net Income	205.2 <i>472.0</i> <i>37.5</i> <u>2.5</u> 40.0	115 - 125 <i>460 - 480</i> <i>41 - 43</i> <i>0</i> 41 - 43	 \$26.7m in bank borrowings ✓ Avg. cost 2.3% \$62.5m additional cash in JVs
Chi-Med Group Costs Admin., interest, tax	(14.8)	(16) - (18)	
Net Loss Attributable to Chi-Med	(26.7)	(71) - (84)	

[1] Short-term investments: 91-183 days deposits; [2] From Scotiabank, Bank of America Merrill Lynch, Deutsche Bank, Hong Kong Shanghai Banking Corporation; [3] R&D expenses, as adjusted (non-GAAP) excludes the actual or estimated impact of the revenue received from external customers of our Innovation Platform, which is reinvested into our clinical trials; [4] SHPL's R&D related subsidies of US\$2.5 million at net income attributable to Chi-Med for 2017; [5] Updated as of December 20, 2018.

Major targets/news flow in 2019

Deep Dive on Clinical Drug Candidates Update on all key assets


Savolitinib (AZD6094) Potential first-in-class selective c-Met inhibitor

Savolitinib (AZD6094)

Potential first-in-class selective c-Met inhibitor

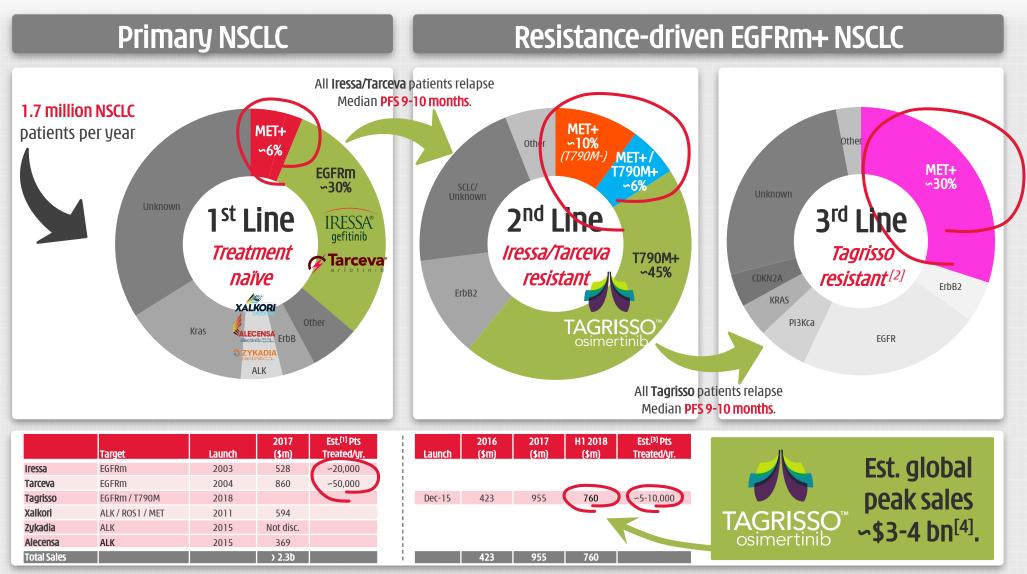
- 1. Strong potential to become first selective c-Met inhibitor approved.
 - Clear clinical efficacy observed in non-small cell lung ("NSCLC"), kidney, gastric and colorectal cancers.
 - Partnered with AstraZeneca key comp. advantages in NSCLC (Tagrisso® combo) & molecular selection.
- 3. Savolitinib design eliminates renal toxicity first generation of selective c-Met inhibitors encountered >700 patients involved in clinical studies to date.

2-quinolinone metabolite in humans in 1st-gen c-Met compounds has dramatically reduced solubility and appeared to crystallize in the kidney resulting in obstructive toxicity.

41

2. c-Met is aberrant in many tumor settings. [3]

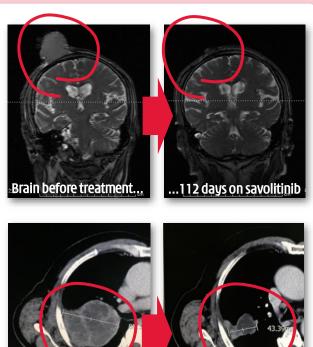
	C-MET			New Cases (2015)		
Indication	Amplifi- cation	Mutation	Over- Expression	Global	China	
Gastric	10%	1%	41%	1,034,000	679,100	
Lung	8-10% [1]	8%	67%	1,690,000	733,300	
Head & Neck		11%	46%	740,000	135,000	
Colorectal	10%		65%	1,477,000	376,300	
Renal cell Carcinoma (Papillary)	40-70%	100% [2]		50,000	7,000	
Renal cell Carcinoma (Clear cell)			79%	270,000	60,000	
Esophagus	8%		92%	496,000	477,900	
Prostate ^[4]			54-83%	1,100,000	60,300	


4. AstraZeneca collaboration & 2016 amendment.

- \$20m received upfront (Dec 2011);
- \$120m in development/approvals milestones (\$25m received as of Jun 2018);
- Several hundred million in commercial milestones;
- Development costs: AZ pay 100% ex-China (excl. \$50m by Chi-Med) & 75% development cost in China (Chi-Med 25%);
- 14-18% tiered royalty ex-China ^[5] & 30% flat rate China royalty on all product revenues.

[1] Range includes (i) approximately 4% of c-Met+ naïve non-small cell lung cancer patients and (ii) 10 - 30% of EGFRm+ non-small cell lung cancer patients, which 15 to 20% develop EGFRm+ tyrosine kinase inhibitor resistance pathway as c-Met+; [2] Hereditary papillary renal cell carcinoma only; [3] Company estimates considering Frost & Sullivan data, National Central Cancer Registry of China and publicly available epidemiology data; [4] By IHC, c-Met overexpression in 54% of lymph node disease and 83% of bone metastases. Varkaris et al, Expert Opin Investig Drugs. 2011 Dec; 20(12): 1677-1684; [5] Subject to approval in the papillary renal cell carcinoma (PRCC) indication and after total aggregate sales of savolitinib have reached \$5bn, the royalty will step down over a two-year period, to an ongoing royalty rate of 10.5% to 14.5%.

Savolitinib Biggest opportunity is MET+ non-small cell lung cancer ("NSCLC")



4) [1] General estimate based on mPFS ~9 mo. average cost/cycle ~\$2,500-3,000; [2] Primary drivers, based on aggregate rocelitinib/Tagrisso data published at 2016/2017 ASCO; [3] AstraZeneca 2016/17 results; [4] Company estimates

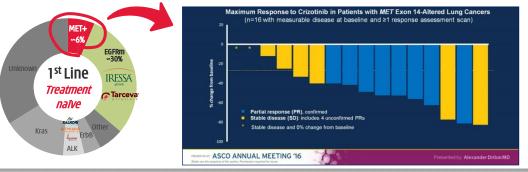
Savo standout efficacy in all MET+ NSCLC subsets...

1L NSCLC^[1]

2L post Iressa[®]/Tarceva[®]

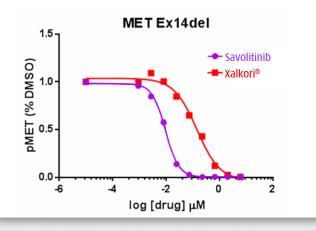
2L/3L post Tagrisso®

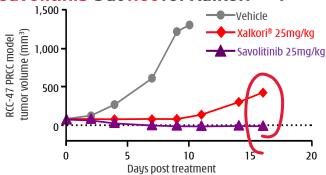
[1] The trial is focused on patients with MET Exon 14 mutation who have failed prior systemic therapy, or are unwilling or unable to receive chemotherapy, however the target patient population is intended to be all MET Exon 14 mutation patients. 43


1L MET Exon 14 deletion NSCLC ^[1] Savolitinib superior target coverage vs. Xalkori[®]

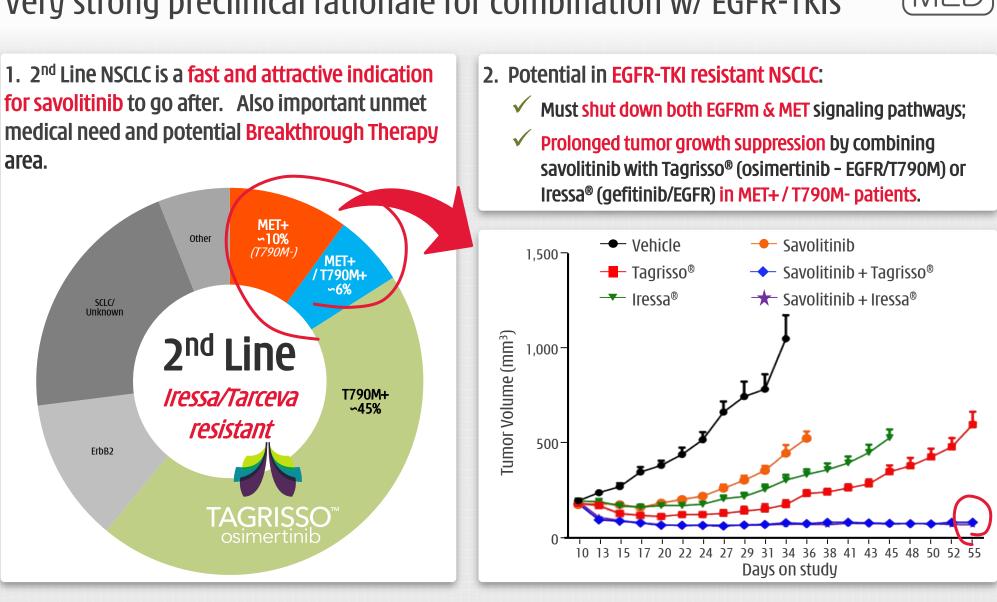
1. Xalkori[®] is a multi-kinase inhibitor with ALK, ROS1, & MET inhibition – savolitinib is uniquely selective and 100 more potent against c-Met.

IC ₅₀ (nM)	Savolitinib	Xalkori® (crizotinib)	Savolitinib vs. Xalkori®
EBC1 Viability	2	19	10x
EBC1 pMET	1	39	40x
293T MET (wild type)	7	79	11x
293T MET (Ex14del)	9	140	16X


2. 1st line NSCLC - Xalkori[®] MET Exon14 del - 2016 ASCO - strong response (~50% ORR) but > 1/3 of responses not durable (4/12) ^[2].

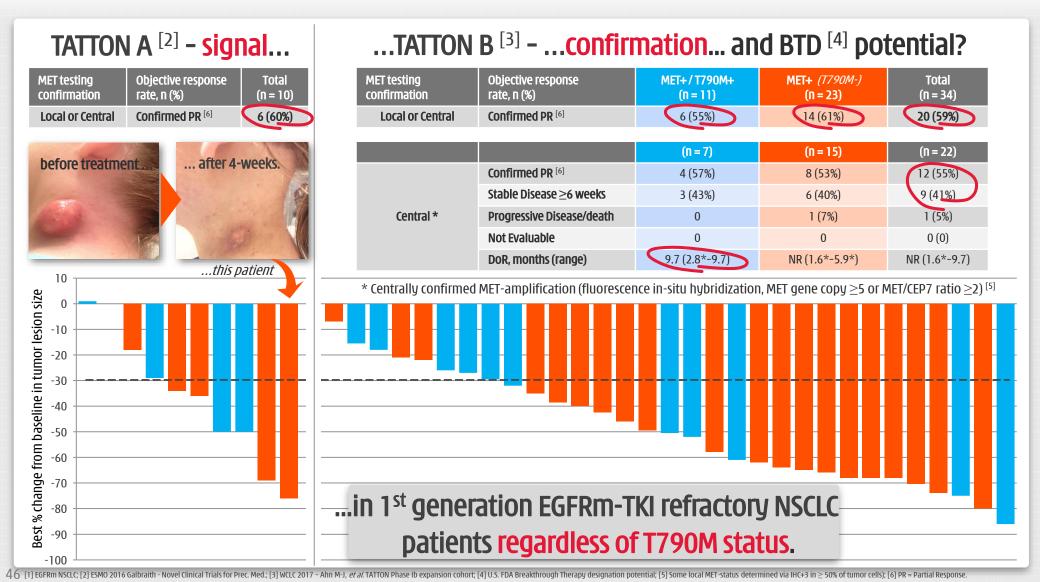

3. Multi-center retrospective analysis of 148 pts. w/ NSCLC MET Exon14^[3]

	MET Exon14 skipping:	MET Exon14 skipping:	Epidemiology of never-exposed to c-MET TKI			
	Exposed to c-MET TKI	Never exposed to c-MET TKI		With concurrent	Without concurrent	
No. of pts	27	34		c-MET amplification	c-MET amplification	
Median OS	24.6 months	8.1 months — 🕨 🕨	Median OS	5.2 months	10.5 months	
				P=0.06		


4. Savolitinib versus Xalkori[®] in MET Ex14del mutant cells ^[4] – better target coverage.

5. Durable tumor cell suppression for savolitinib but not for Xalkori^{® [5]}.

[1] The trial is focused on patients with MET Exon 14 mutation who have failed prior systemic therapy, or are unwilling or unable to receive chemotherapy, however the target patient population is intended to be all MET Exon 14 mutation patients; [2] Drilon A, Abstract 108 Efficacy and safety of crizotinib in patients with advanced MET Exon 14-altered non-small cell lung cancer; [3] ASCO 2017, Abstract 8511, Mark M. Awad et al.; [4] Paik, P.K., et al., Response to MET inhibitors in patients with stage IV lung adenocarcinomas harboring MET mutations causing exon 14 skipping. Cancer Discov, 2015. 5(8): p. 842-9.; [5] Schuller AG et al. "Regression in Papillary Renal Cell Carcinoma Patient-Derived Xenograft Models". Clin Cancer Res 2015;21:2811-2819.

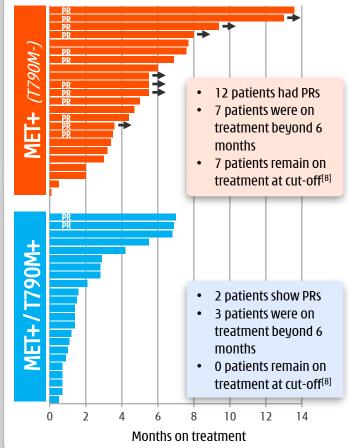


Savolitinib – 2L EGFRm NSCLC Very strong preclinical rationale for combination w/ EGFR-TKIs

Savolitinib – 2L NSCLC^[1] combo w/ Simertinib To announce plans for further studies during 2019

Savolitinib – 2L NSCLC^[1] combo w/ IRESSA[®] gefitinib Compelling in MET+ / T790M-, pivotal decision under discussion

Savo / Iressa[®] combo in 1st gen. EGFRm-TKI refractory patients ^[2]...outstanding response in MET+ / T790M-


MET testing confirmation	Objective response rate, n (%)	MET+ / T790M+ (n = 23)	MET+ <i>(T790M-)</i> (n = 23)	MET+ / T790M unk. (n = 5)	Total (n = 51)
	Confirmed PR ^[3]	2 (9%)	12 (52%)	2 (40%)	16 (31%)
Central *	SD $^{[4]} \ge$ 6 weeks	9 (39%)	7 (30%)	2 (40%)	18 (35%)
central	PD ^[5] / death	7 (30%)	3 (13%)	0	10 (20%)
	Not Evaluable	5 (22%)	1 (4%)	1 (20%)	7 (14%)

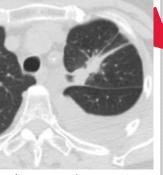
...vs. TATTON B data (savo / Tagrisso[®] combo)^[6]

	(n = 11)	(n = 23)	MET+ / T790M unk. (n = 0)	Total (n = 34)
onfirmed PR ^[3]	6 (55%)	14 (61%)	0	20 (59%)
	(n = 7)	(n = 15)	(n = 0)	(n = 22)
onfirmed PR ^[3]	4 (57%)	8 (53%)	0	12 (55%)
$O^{[4]} \ge 6$ weeks	3 (43%)	6 (40%)	0	9 (41%)
D ^[5] / death	0	1 (7%)	0	1 (5%)
ot Evaluable	0	0	0	0 (0)
סיס	firmed PR [3] $[4] \ge 6$ weeks [5] / death t Evaluable	$(n = 7)$ firmed PR [3] 4 (57%) [4] \geq 6 weeks 3 (43%) [5] / death 0 t Evaluable 0	$(n = 7)$ $(n = 15)$ Infirmed PR [3] 4 (57%) 8 (53%) $[4] \ge 6$ weeks 3 (43%) 6 (40%) [5] / death 0 1 (7%) t Evaluable 0 0	$(n = 7)$ $(n = 15)$ $(n = 0)$ nfirmed PR [3]4 (57%)8 (53%)0[4] \geq 6 weeks3 (43%)6 (40%)0[5] / death01 (7%)0

* Centrally confirmed MET-amplification (fluorescence in-situ hybridization, MET gene copy \geq 5 or MET/CEP7 ratio \geq 2)^[9].

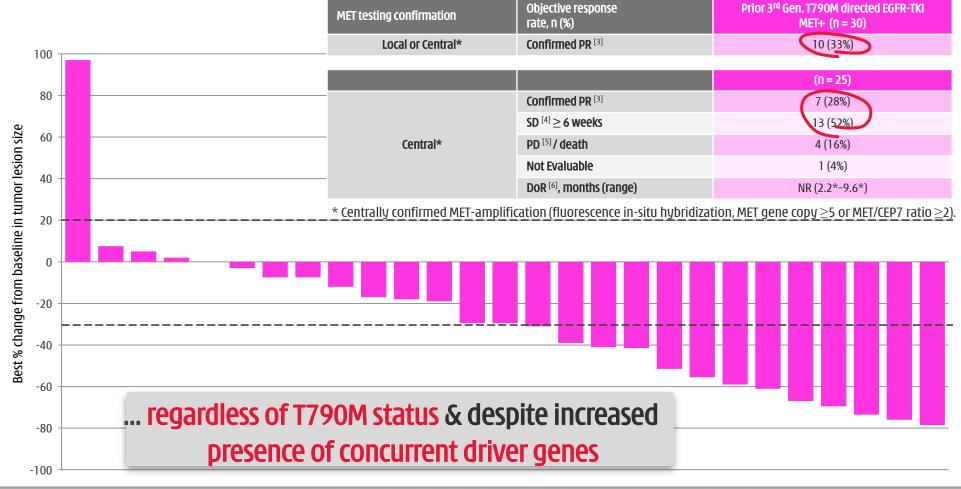
...Iressa[®] combo - 6mo. DoR ^[7] in MET+ / T790M- patients

[1] EGFRM NSCLC; [2] WCLC 2017Yang J-J, et al. A Ph.lb Trial of savolitinib plus gefitinib for patients with EGFR-mutant MET-amplified advanced NSCLC; [3] PR = Partial Response; [4] SD = Stable Disease; [5] PD = Progressive Disease; [6] WCLC 2017 - Ahn M-J, et al. TATTON Phase Ib exp. cohort; [7] DoR = Duration of Response; [8] Aug 21, 2017; [9] On TATTON B, some local MET-status determined via IHC+3 in \geq 50% of tumor cells.


Savolitinib – 2L/3L NSCLC^[1] – TAGRISSO[™] resistant MET+ driven resistance in ~30% of patients

3 out of 3 MET+ patients responded to savo/Tagrisso[®] combo.

LUL Mass Pre-Treatment 6 wks. on savo/Tag. Treatment


Pt	EGFR mutation	# Prior Therapies	Prior 3 rd gen TKI	TISSUE (NGS, FISH)	PLASMA ctDNA (NGS)
1	L858R	1		<i>MET</i> amp, T790 WT	<i>MET</i> amp, T790M ND
2	Del19	1		-	T790M ND
3	Del19	2	Y	-	T790M ND
4	L858R (de novo T790M)	2	Ŷ	<i>MET</i> amp, <i>EGFR</i> amp T790M (germline)	-
5	L858R	3	Y	T790wt, <i>EGFR</i> amp	T790M ND
6	L858R	4	Y	T790 WT	T790M ND
7	Del19	3	Y	-	T790M ND
8*	Del19	3		T790M/C797S	T790M/C797S
9	L858R	4	Y	T790 WT	-
10	Del19	3	Y	-	<i>PIK3CA</i> E545K, <i>PIK3CA</i> amp, T790M N
11	Del19	2	Y	<i>MET</i> amp, <i>EGFR</i> amp, T790 WT	T790M ND
12	Del19	2	Y	-	T790M/C797S
13	Del19	9		T790 WT	-
7	Del19	2	Y	T790 WT	T790M ND
6	Del19	1		T790 WT	FGFR1 D60N, FGFR1 amp, T790M ND
16	L858R	2		<i>MET</i> amp, T790 WT	<i>MET, EGFR</i> amp, T790M ND
17	L858R	3	Y	T790 WT	T790M ND
18	Del19 (de novo T790M)	3		SCLC, T790 WT	T790M ND, <i>EGFR</i> amp
19	Del19	3	Y	T790 WT	T790M/C797S, <i>MET</i> amp, <i>EGFR</i> amp
20	L858R	2		<i>MET</i> amp, <i>EGFR</i> amp, T790 WT	-
21	L858R	3		-	T790M/C797S, <i>EGFR</i> amp
22*	L858R	1		MET amp, T790 WT	-
23	Del19	4	Y	-	T790M/C797S

[1] Based on rocelitinib/Tagrisso data published at 2016/2017 ASCO; [2] In xenograft model H820, with EGFRm, T790M+ and MET CN gain. D'Cruz CM et al; #761 Preclinical data for changing the paradigm of treating drug resistance in NSCLC: Novel combinations of AZD6094, a selective MET inhibitor, and AZD9291 an irreversible, selective (EGFRm and T790M) EGFR TKI; American Association of Cancer Research Annual Meeting; April 19, 2015.

Savolitinib – 2L/3L NSCLC^[1] combo w/ simertinib Initiated SAVANNAH global registration study

...TATTON B^[2] - ...promising efficacy in MET+ Tagrisso failure patients...

[1] EGFRM NSCLC; [2] WCLC 2017 - Ahn M-J, et al. TATTON Phase Ib expansion cohort; Waterfall plot based on evaluable patients (n=30): all patients dosed and with on-treatment assessment or discontinuation prior to first tumour assessment; Data cut-off 31 Aug 2017; [3] PR = Partial Response; [4] SD = Stable Disease; [5] PD = Progressive Disease; [6] DOR = Duration of Response.

Combinations

Tagrisso[®] & savo both highly selective/tolerable monotherapies (MED)

				Eff	icacy	Discont	inuations as %	Enrolled
US FDA Approval Date	Treatment	Disease setting	n	ORR	Median PFS (mo.)	Due to AE	Withdrawn / Other	Total ^[5]
Monot	therapy – Tagrisso® / savolitin	ib						
30-Mar-17	Tagrisso® (osimertinib)	2L EGFRi-refractory T790M+ NSCLC (AURA3)	279	71%	10.1	6%	6%	13%
	savolitinib 600mg QD monotherapy ^[3]	All-lines Papillary RCC FOR REFERENCE ONLY NOT NSCLC	109 [1]	18%	6.2	9%	5%	14%
Combi	nation – Tagrisso® + savolitin	ib						
	savolitinib 600mg QD + Iressa® (gefitinib) [4]	\geq 2L EGFRm+ c-MET+ T790M- NSCLC after 1 st -gen EGFR TKI (expansion)	51 ^[2]	52%	ND	20%	14%	33%
	savolitinib 600mg QD + Tagrisso® [4]	≥ 2L EGFRm+ c-MET+ T790M-/+ NSCLC after 1 st -gen EGFR TKI (TATTON B)	34	59%	ND	- 30%	3%	220
	savolitinib 600mg QD + Tagrisso® [4]	EGFRm+ c-MET+ NSCLC after 3 rd -gen EGFR TKI (TATTON B)	30	33%	ND	30%	5%	33%
Approv	ed treatments in NSCLC							
29-Apr-14	Zykadia® (ceritinib)	2L ALK+ NSCLC after Xalkori (single arm)	163	56%	6.9	10%	10%	20%
12-Dec-14	Cyramza ® (ramucirumab) + Taxotere ®	2L NSCLC after plat-chemo	624	23%	4.5	15%	21%	37%
24-0ct-16	Keytruda® (pembrolizumab) 2mg/kg	2L PD-L1+ (TPS≥1%) NSCLC after plat-chemo (KEYNOTE-010)	345	18%	3.9	10%	26%	37%
2-0ct-15	Keytruda® (pembrolizumab) 10mg/kg	2L PD-L1+ (TPS≥1%) NSCLC after plat-chemo (KEYNOTE-010)	346	18%	4.0	9%	27%	36%
9-0ct-15	Opdivo ® (nivolumab)	2L NSCLC after plat-chemo	292	19%	2.3	15%	4%	20%
4-Mar-15	Opdivo ® (nivolumab)	2L squ. NSCLC after plat-chemo	135	20%	3.5	12%	8%	20%
2008	Chemo doublet (platinum + pemetrexed)	2L NSCLC (AURA3)	136	31%	4.4	11%	17%	27%
1999	Taxotere® (docetaxel)	2L NSCLC <i>(REVEL; KEYNOTE-010; Opdivo x2 aggregate total)</i>	1,391	12%	3.5	13%	22%	36%

Tagrisso® + savo combo tolerable even in very sick late-stage ≥3L patients

1] PRCC Phase II - Efficacy data from MET+ patients (n=44), discontinuation data from late 2017 data cut-off; Tolerability data from all patients (n=109); [2] TATTON Study - Efficacy data for noted molecular subsets; Tolerability data from all patients (n=64); 3] September 2017 Journal of Clinical Oncology; [4] 2017 World Conference on Lung Cancer; [5] Total discontinuations = Discontinuations NOT due to Disease Progression or Death; ND = Not Disclosed.

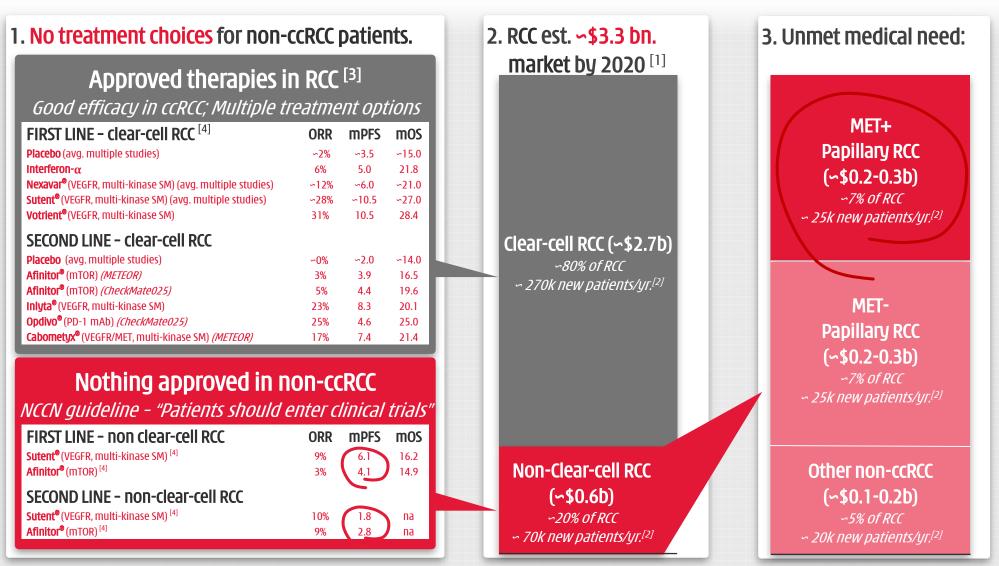
Safety - savolitinib plus IRESSA® or AGRISSO gefitinib Adverse event profiles of combinations - manageable & tolerable

	IPASS P 1 st -Line EG		
Grade ≥3 AEs, Preferred term, n (%)*	IPASS Iressa® (N=607)	IPASS carbo. + Taxol® (N=589)	≥ 2 nd -Line ^[2] Savo + Iressa® (N=51)
Any Grade ≥3 AE	29% (Gr. 3-4)	61% (Gr. 3-4)	17 (33%)
Vomiting	1 (<1%)	16 (3%)	
Rash or acne	19 (3%)	5 (1%)	
AST/ALT increase			8 (16%)
Nausea	2 (<1%)	9 (1%)	1 (2%)
Decreased appetite			
Fatigue			
Neutropenia	22 (4%)	387 (67%)	
ALP increased			11 (22%)
Neurotoxic effects	2 (<1%)	29 (5%)	
Anemia	13 (2%)	61 (11%)	
Leukopenia	9 (1%)	202 (35%)	
Thrombocytopenia			

FLAURA Phase III 1 st -Line EGFRm NSCLC				
Tagrisso® (N=279)	lressa® or Tarceva® (N=277)			
94 (34%)	124 (45%)			
0	4 (1%)			
3 (1%)	19 (7%)			
3 (1%)	37 (13%)			
0	0			
7 (3%)	5 (2%)			
2 (1%)	2 (1%)			
3 (1%)	3 (1%)			

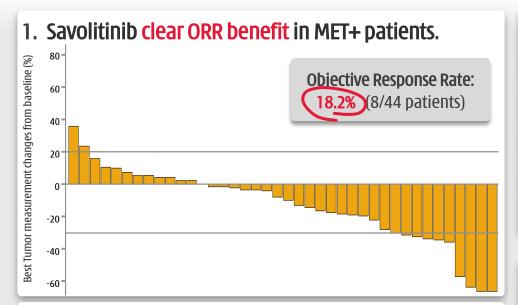
AURA3 Phase III 2nd-Line EGFRm NSCLC

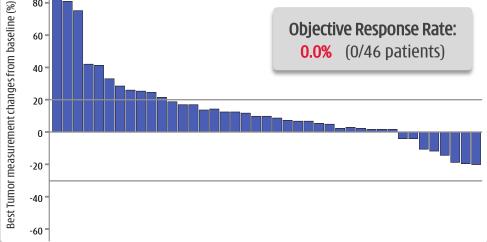
Tagrisso® (N=279)	Chemo-doublet (plat. + pemetrex.) (N=136)	≥ 2 nd -Line ^[1] Savo + Tagrisso [®] (N=66)
63 (23%)	64 (47%)	33 (50%)
1 (<1%)	3 (2%)	5 (8%)
2 (1%)		4 (6%)
6 (2%)	2 (2%)	4 (6%)
2 (1%)	5 (4%)	3 (5%)
3 (1%)	4 (3%)	3 (5%)
3 (1%)	1 (1%)	3 (5%)
4 (1%)	16 (12%)	3 (5%)
2 (1%)	16 (12%)	
	5 (4%)	
1 (<1%)	10 (7%)	


Sources: [1] TATTON B - Figures where any grade AE \geq 10% patients. Ahn M-J, et al. Abstract #8985. Presented at the World Lung Cancer Congress (WCLC) 2017, Japan, October 2017;

[2] Phase Ib/II study - Figures where any grade AE \geq 10% patients. Yang J-J, et al. Abstract #8995. Presented at WCLC 2017, Japan, October 2017.

AST = aspartate aminotransferase; ALT = alanine aminotransferase; ALP = alkaline phosphatase.

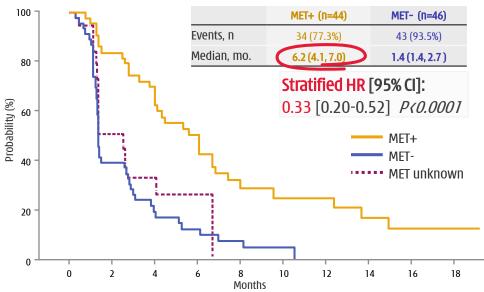

MET+ PRCC - unmet medical need



[1] Transparency Market Research, March 2015 - RCC (excl. non-RCC Kidney Cancer) global market size; [2] Frost & Sullivan, March 2016; [3] NCCN Guideline for kidney cancer. Version 3.2016, 05/26/16, RCC = renal cell carcinoma; [4] ORR = Objective Response Rate, mPFS = median Progression Free Survival, mOS = median Overall Survival

Savolitinib – PRCC Phase II Clear efficacy & durable response in MET+ PRCC patients

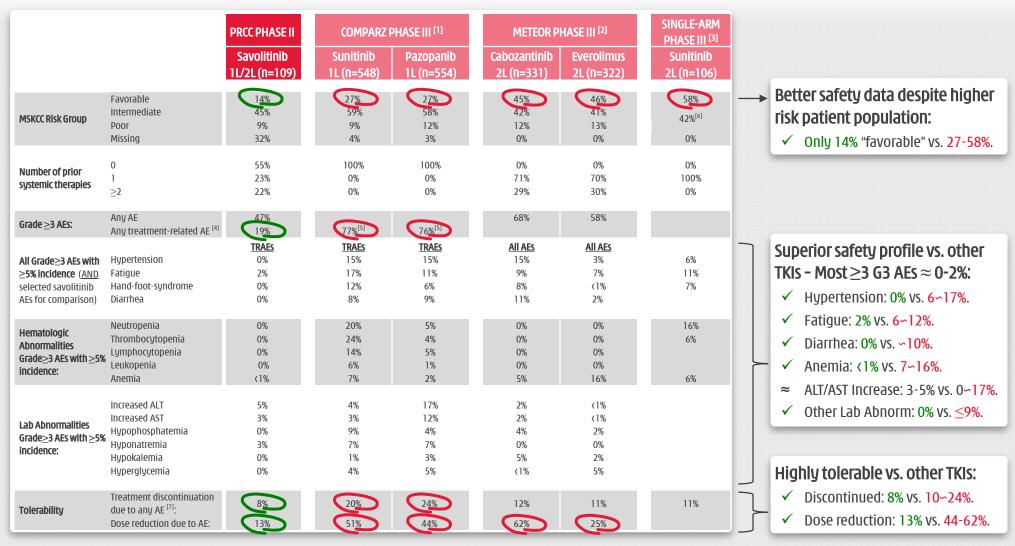
2. MET- patients – no response to savo.


3. Disease Control Rate ("DCR") – big advantage in MET+ with OCR 73.2% vs. MET- 28.2%.^

Tumor responses in the overall treatment population and by MET status

RECIST response, n (%)	MET+ (n=44)	MET- (n=46)	MET unknown (n=19)	Total (n=109)
Partial Response [†]	8 (18.2%)*	0 (0.0%)	0 (0.0%)	8 (7.3%)
Stable Disease	22 (50.0%)	11 (23.9%)	5 (26.3%)	38 (34.9%)
Progressive Disease	11 (25.0%)	28 (60.9%)	9 (47.3%)	48 (44.0%)
Not Evaluable	3 (6.8%)	7 (15.2%)	5 (26.3%)	15 (13.8%)

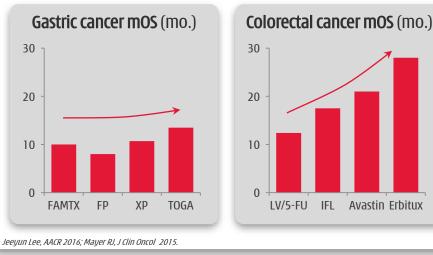
* P=0.002 versus MET-independent subgroup (Fisher exact test). Responses assessed according to RECIST version 1.1.[†] Unconfirmed responses excluded. ^ Evaluable patients.


4. Median PFS - big advantage in MET+ patients.

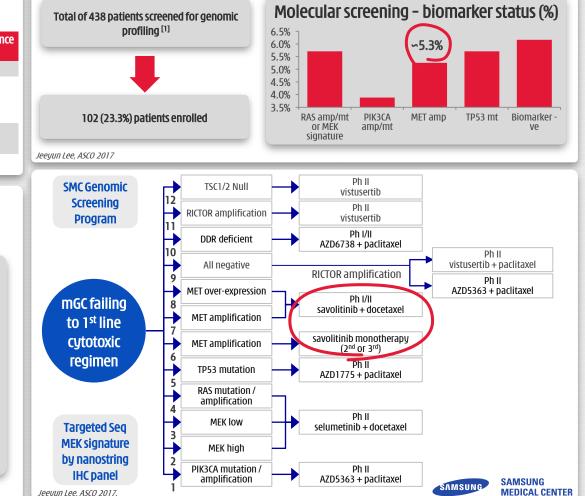
Highest selectivity delivers better tolerability

[1] RJ Motzer et al, *Pazopanib versus Sunitinib in Metastatic Renal-Cell Carcinoma*, N Engl J Med 369;8, Aug 22, 2013; [2] TK Choueiri et al, *Cabozantinib versus everolimus in advanced renal cell carcinoma (METEOR)*, Lancet Oncol. 17;7, Jun 5, 2016; [3] RJ Motzer et al, *Sunitinib in Patients with Metastatic Renal Cell Carcinoma*, JAMA 295;21 Jun 7, 2006; [4] As assessed by investigator; [5] Includes Grade 5AEs; [6] Includes Intermediate & Poor. TRAEs = Treatment-Related Adverse Events; [7] Early 2017 ASCO Genitourinary Cancers Symposium data cut-off.

Savolitinib – Gastric cancer A major problem in east Asia – Japan, South Korea & China

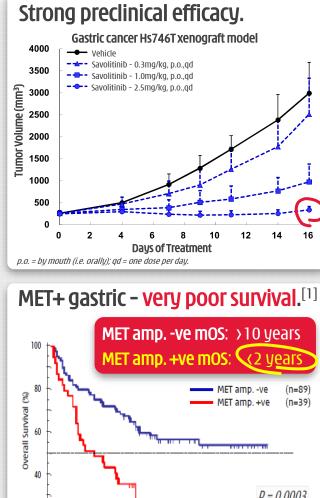


1. Gastric (stomach) cancer is the 5th most common cancer globally – 723,000 deaths/year.


	Est. Age Standardised Rates (cases/100,000)	New cases ('000)	Deaths ('000)	5-year Prevalence ('000)
World	17.0	952	723	1,538
South Korea	41.8	22	17	32
Japan	29.9	38	29	56
China	22.7	405	325	594
EU-28	9.0	82	58	119
USA	6.8	21	12	32

Jeeyun Lee, AACCR 2016; IARC, WHO 2012; Jung KW, Cancer Research Treatment 2013; World Cancer Research Fund International.

2. Little progress in gastric cancer^[2] in improving overall survival ("OS") in first-line palliative setting.


3. VIKTORY – umbrella trial in gastric cancer *(South Korea).*

[1] Since June 2014; [2] FAMTX = 5-FU + doxorubicin + methotrexate; FP = cisplatin + 5-FU; XP = capecitabine + cisplatin; TOGA = trastuzumab + chemo; LV/5-FU = leucovorin + 5-FU; IFL = irinotecan + 5-FU + leucovorin.

Savo potential not only in NSCLC... ...highly promising efficacy in MET+ gastric cancer (...& kidney)

Baseline ... afte PET CT... savolitini 600mq. P = 0.0003120 140 Jeevun Lee, AACR 2016.

3. VIKTORY trial – 34-year old male; surgery ruled-out; failed 4-cycles XELOX.

56 [1] mos = median overall survival post surgery.

40

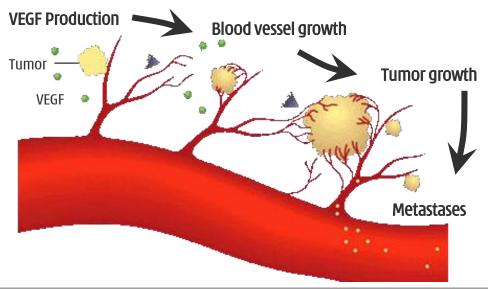
60

Time After Surgery (Months)

100

20

20

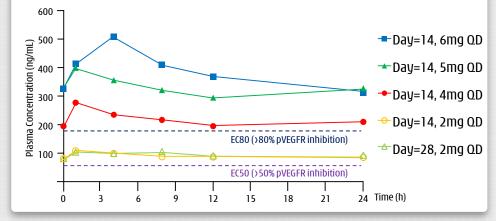


Fruquintinib best-in-class VEGFR TKI Cutting off blood flow a **\$18 bn** market in **\$30 tumor settings**

	Drug	FDA Approved Indications	– 2017 Sales		
Company	(INN Name)	Indication	Year		
		2L bevacizumab-pretreated mCRC	2013		
		1/2L mCRC	2004		
		1L non-sq NSCLC	2006		
		2L GBM	2009		
Roche	Avastin®	1L ccRCC	2009	\$6.796.0n	
	(Bevacizumab)	1L Cervical Ca.	2014		
		1L Ovarian Ca.	2018		
		1/2L platinum-sensitive Ovarian Ca.	2016		
		2/3L platinum-resistant Ovarian Ca.	2014		
		2L GIST	2006		
	Cutopt®	≥1L pNET	2011		
Pfizer	Sutent®	adjuvant RCC	2017	\$1,081.0n	
	(Sunitinib)	1L RCC	2007		
		\geq 2L cytokine-ref. ccRCC	2006		
Boehringer Ingelheim	Vargatef® Ofev® (Nintedanib)	2L adeno-NSCLC (by EMA)	2014	\$1,076.0m	
-	Navara	≥1L RCC	2005		
Bayer	Nexavar®	1L HCC	2007	\$923.2m	
	(Sorafenib)	lodine-ref. DTC	2013	<i>••</i>	
Novartis	Votrient®	1/2L RCC	2009	\$808.0m	
NUVdius	(Pazopanib)	2L STS	2012	≱000.0 111	
	Cyramza®	2L GC	2014		
Lilly	(Ramucirumab)	2L NSCLC	2014	\$758.3m	
	(KaliluciiulilaD)	2L mCRC	2015		
Exelixis/	Cometriq®	≥1L MTC	2012		
Ipsen	Cabometyx®	1L ccRCC	2017	\$406.2m	
прэсп	(Cabozantinib)	≥2L ccRCC	2016		
	Stivarga®	3L mCRC	2012	\frown	
Bayer	(Regorafenib)	2L GIST	2013	\$348.7m	
	(J)	2L HCC	2017		
Pfizer	Inlyta® (Axitinib)	2L ccRCC	2012	\$339.0m	
Merck/	Lenvima®	lodine-ref. DTC	2015	\$295.9m	
Eisai	(Lenvatinib)	2L ccRCC	2016	# <i>2 / J</i> .7111	

	Drug	FDA Approved Indications		- 2017 Sales
Company	(INN Name)	Indication	Year	
Takeda	Iclusig®	CML	2012	\$237.9m
Idkeud	(Ponatinib)	Ph+ ALL	2012	\$237.711
Hengrui	AiTan®	3L GC (by CFDA)	2015	\$230.0m
nengrui	(Apatinib)		2015	\$230.011
Sanofi	Zaltrap®	21 m(R(2012	\$83.0m
Sanon	(Ziv-Aflibercept)		2012	\$05.011
Simcere	Endu®	>1L NSCLC (by CFDA)	2005	\$58.1m
Sincere	(rh-Endostatin)		2005	\$J0.111
Sanofi	Caprelsa®	>1L MTC	2011	NA
341011	(Vandetanib)		2011	
Aveo	Fotivda®	1/2L ccRCC (by EMA)	2017	NA
AVEO	(Tivozanib)		2017	INA
Sino Biopharm	FocusV®	3L NSCLC (by CFDA)	2018	NA
	(Anlotinib)	SE NSCEC (DY CFDA)	2010	

Note: * Active indications in US as of July 3, 2018. Some indications have been approved for frontline therapy. Sources: FDA approved label; Medtrack; Corporate annual reports; D. Ribatti, Oncotarget 2017 8(24) 38080-1, Sales for anti-angiogenic drugs. [1] Includes sales for idiopathic pulmonary fibrosis

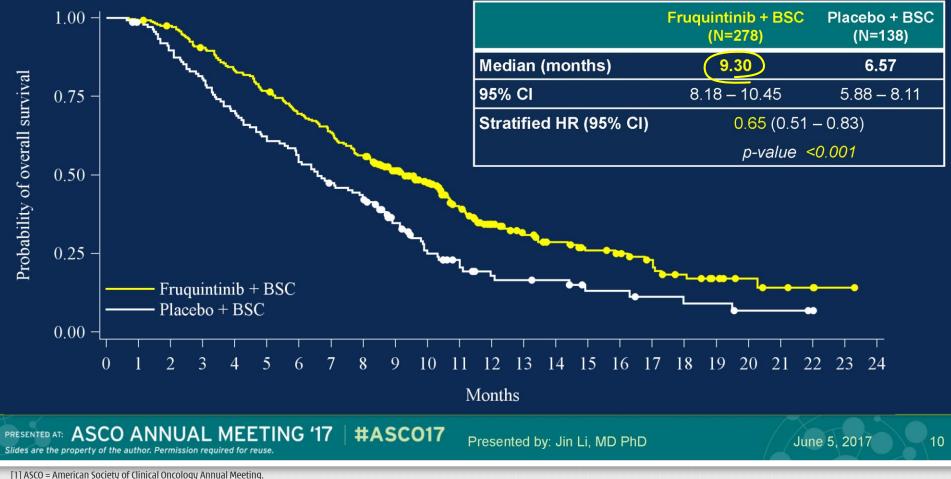

Fruquintinib – 24hr full target coverage

The most selective VEGFR inhibitor in clinical trials globally ^[1]

- ✓ Validation of R&D approach designed to only inhibit VEGFR1,2,3, facilitating full target coverage & combinations.
- ✓ Approval and launch for 3L CRC.
- ✓ Pivotal Phase III Taxol[®] combo in 2L gastric cancer initiated Oct 2017.
- ✓ Phase II Iressa[®] combo in 1L EGFRm+ NSCLC early data at WCLC 2017.
- ✓ Phase I in solid tumors in US initiated Q4 2017.
- ✓ China GMP **facility built and certified** to support launch.
- PD-1 combination collaborations.

2. Only inhibits VEGFR – limits off-target toxicity & allows for full & sustained target inhibition.

3. Selectivity and potency superior to competitors' drugs.


	Sutent® (sunitinib)	Nexavar® (sorafenib)	Stivarga® (regorafenib)	Tivozanib	Fruquintinib
Kinase profile	VEGFR1,2,3, PDGFRβ, FLT3, CSF-1R, c-Kit, Ret	RAF, VEGFR2, PDGFRβ Flt3, c-Kit, FGFR1	VEGFR1,2,3, Raf, Ret, PDGFR, c-Kit	VEGFR1,2,3, BRK, PDGFRα, PDGFRβ, c-Kit, Tie2, EphB2	VEGFR1,2,3
AUC at ED50/ED60 in mouse (ng/mL*hr)	2,058	25,473	na	1,640	898
MTD in human (mg/day)	50, qd	400, bid	160, qd	1.5, qd	4, qd; 6, 3wk/1wk
AUC, 0∽24h at Steady state MTD (ng/mL*hr	592	47,780 x2 (D28)	58,270 (D21)	1,180 (D28)	5,000 <u>~6,000</u> (D28)
Efficacy in Phase I	22 patients PR: 4 (18%), DCR: 27%	45 patients ^[2] PR: 1 (2%), DCR: 58%	53 patients PR: 3 (6%), DCR: 66%	37 evaluable patients PR: 1 (3%), DCR: 51%	34 evaluable patients PR: 13 (38%), DCR: 82%

[1] Among small molecule tyrosine kinase inhibitors and to the best of Chi-Med's knowledge; [2] (\geq 100 mg bid); PR = Partial Response; DCR = Disease Control Rate.

Fruquintinib – 3L/4L colorectal cancer Develop in US/EU for rego/TAS-102 ref./intol. patients^[1]

Overall Survival (Primary Endpoint) FRESCO clearly succeeded in meeting the primary efficacy endpoint of OS

60 [1]

Better tolerability = Better efficacy

	Fruqui	ntinib	Regorat	fenib	Regora	fenib	Regora	fenib
Third-Line Metastatic Colorectal cancer	FRESCO Mainland China		CONC	CONCUR		CONCUR		ECT
			Chinese Patients (Mainland China, Hong Kong, Taiwan) ^[1]		Mainland China, Hong Kong, Taiwan, Vietnam, South Korea		Global	
Treatment arms	Fruquintinib	Placebo	Regorafenib	Placebo	Regorafenib	Placebo	Regorafenib	Placebo
Patients (n)	278	138	112	60	136	68	505	255
Complete Response, n (%) Partial Response, n (%) Stable Disease, n (%) Disease Control Rate, n (%) Median Progression-Free Survival (mPFS) (mo.) mPFS p-value	0.4% 4.3% 57.6% 62.2% +49 3.7 +19 <0.0	1.8	0.0% 3.6% 40.2% 45.5% 2.0 +0 not publ	3 1.7	0.0% 4.4% 45.6% 51.5% +44 3.2 +1, (0.00	5 1.7	0.0% 1.0% 42.8% 41.0% +26. 1.9 +0.2 <0.000	1.7
mPFS Hazard Ratio	0.2	6	0.32	2	0.3	1	0.4	9
Median Overall Survival (mOS) (mo.) mOS p-value mOS Hazard Ratio	9.3 (0.0		8.4 +2 not publ 0.56		8.8 +2 , 0.00	02	6.4 +14 0.00 0.7	52

- Good fruquintinib efficacy over regorafenib in Chinese patients specifically in terms of Disease Control Rate; median Progression-Free Survival and median Overall Survival.
- FRESCO is a fully-powered Phase III registration study (n=416) whereas CONCUR was an under-powered Asia region study (n=204, including only 129 mainland Chinese patients ^[2]).
- CONCUR results should be regarded as directional only China approval resulted from CORRECT study (n=760).

ELUNATE® Fruquintinib Capsules

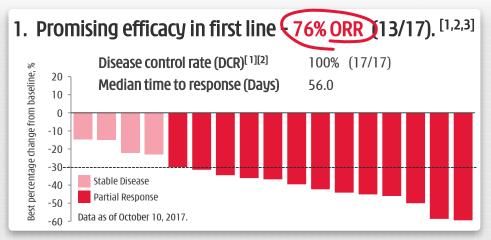
	ELUNATE®	Stivarga® (regorafenib) tablets
BIOCHEMICAL ACTIVITY	IC ₅₀ (nmol/L)	IC ₅₀ (nmol/L)
On-Target Kinases:		
VEGFR1	33	13
VEGFR2	35	4.2
VEGFR3	0.5	46
Off-Target Kinases:		
Ret	128	1.5
FGFR1	181	202
c-kit	458	7
PDGFRβ	>10,000	22
RAF-1	>10,000	2.5
B-RAF	>10,000	28
B-RAF ^{V600E}	>10,000	19

Stivarga® liver toxicity black-box warning:

→ Increased liver function test monitoring (weekly if elevated) & remedial dose interruption.

STIVARGA (regorafenib) tablets, oral Initial U.S. Approval: 2012

WARNING: HEPATOTOXICITY See full prescribing information for complete boxed warning. Severe and sometimes fatal hepatotoxicity has been observed in clinical trials. Monitor hepatic function prior to and during treatment. Interrupt and then reduce or discontinue Stivarga for hepatotoxicity as manifested by elevated liver function tests or hepatocellular necrosis, depending upon severity and persistence. (2.2, 5.1)


		NATE [®]	Stiva (regorafenit	
3 rd -Line Metastatic Colorectal cancer	FRESCO Mainland		CONCUF (Mainland China	
Treatment arms	Elunate®	Placebo	Stivarga [®]	Placebo
Patients (n)	278	138	112	60
≥G3 AE (Safety population)	61.1%	19.7%	69.6%	46.7%
SAE (Safety population)	15.5%	5.8%	31.3%	26.7%
VEGFR on-target related AEs:				
Hypertension \geq G3	21.2%	2.2%	12.5%	8.3%
Hand-Foot Syndrome (Palmar-plantar), ≥G3	10.8%	0.0%	17.0%	0.0%
Off-target (i.e. non-VEGFR) related AEs:				
Hypophosphatemia, ≥G3	0.0%	0.0%	8.0%	0.0%
Hypokalemia, ≥G3	0.7%	0.7%	6.3%	0.0%
Rash/desquamation, ≥G3	0.0%	0.0%	4.4%	0.0%
Lipase increase, ≥G3	0.0%	0.0%	6.3%	1.7%
Hepatic function (Liver function) AEs:				
ALT increased, ≥G3	0.7%	1.5%	7.1%	3.3%
AST increased, ≥G3	0.4%	0.7%	8.9%	0.0%
Blood bilirubin increased, ≥G3	1.4%	1.5%	8.9%	8.3%
Tolerability:				
AE Leading to dose interruption	35.3%	10.2%	68.8%	25.0%
AE Leading to dose reduction	24.1%	4.4%	23.2%	0.0%
AE Leading to treatment discontinuation	15.1%	5.8%	14.3%	6.7%

Elunate[®] higher selectivity; lower off-target toxicity; superior tolerability

62 [1] Treatment Related AEs (FRESCO study); [2] All AEs -- Efficacy & safety of regorafenib monotherapy in Chinese patients with previously treated metastatic colorectal cancer: subgroup analysis of the CONCUR trial; R Xu.; >G3 AEs in >4% of Patients.

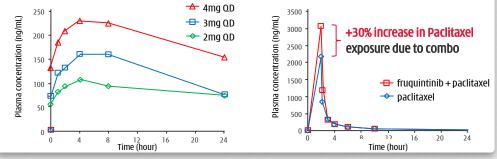
Fruquintinib – 1L NSCLC combo w/ IRESSA[®] gefitinib Two small molecule TKIs allow for better management of tox.

2. Prelim. safety data: fruquintinib vs. other VEGFRis.

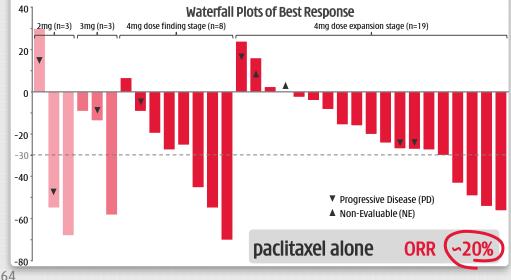
Adverse Events ("AEs")	Iressa® or Tarceva® FLAURA ^[5] N = 277, n (%)	Avastin®+ Tarceva® ^[6] N = 75, n (%)	Fruquintinib + Iressa® N = 26, n (%) ^[3]
All AEs, any grade	273 (98%)	≥74 (≥99%)	23 (89%)
All AEs, Grade ≥3	124 (45%)	68 (91%)	8 (31%)
AEs leading to death	6 (2%)	0 (0%)	0 (0%)
AEs leading to VEGFRi discontin.	NA	31 (41%)	1 (4%)
Grade ≥3 AEs:			
Liver function (e.g. ALT, AST incr.)	33 (12%)	6 (8%)	6 (23%)
Hypertension	NA	45 (60%)	1 (4%)
Proteinuria	NA	6 (8%)	1 (4%)
Rash	13 (5%)	19 (25%)	0 (0%)
Decreased appetite	22 (8%)	1 (1%)	NA

63

3. Combination of highly selective TKIs vs. mAbs: daily dose flexibility improves tolerability. This enables maintained drug exposure, leading to more durable response. ^[2,3]


	PR	PR	PR		PR		PR		-
	PR	PR	PR		PR		PR	→	
	SD		SD		→				
	PR	PR	PR	+					
	SD	_	PR 🔶						
	PR	PR	+						
	PR SD	PR							
	PR	PR							
	PR	PR [4]							
	PR								
	SD -								
	PR 🔶								
	→							Ø	`
	PR 🔶			50	ng fruquin	cinid + 250	img i	ressa®	,
	SD 🔶			4 n	ng fruquin	tinib + 250) mg l	ressa®)
	. →			30	ng fruquin	tinib + 250	ma I	ressa®)
	I.						-		
	•				Iquintinib			enupte	20
	÷			PR Pa	irtial respo	nse ^[2]			
→	-			SD Sta	able diseas	e			
→					eatment co				
PR 🔶				→ 10		manuny			
PR 🔶									
→									
28	56	84	112	140	168	196	224	2	1 252
ita as of October 10, 2	0017	Du	ration of Ti	reatment (o	davs)				

[1] Best tumor response for efficacy evaluable patients (patients who had both baseline and post-baseline tumor assessments); ORR = objective response rate; [2] Four PRs not yet confirmed at the time of data cut-off date; mAb = Monoclonal Antibody; [3] Lu, S., et al, "A Phase II study of fruquintinib in combination with gefitinib in stage IIIb/IV NSCLC patients harboring EGFR activating mutations", ID 10907 IASLC 18th World Conference on Lung Cancer, Yokohama, Japan, October 15-18, 2017; [4] Drug discontinuation due to Grade 3 proteinuria and Grade 3 OTC prolonged; [5] Ramalingam S. et al, "LBA2 PR Osimertinib vs standard of care (SoC) EGFR-TKI as first-line therapy in patients (pts) with EGFRm advanced NSCLC: FLAURA", ESMO 2017 Congress, Madrid, Spain, September 9, 2017; [6] Seto, T., et al, "erlotinib alone or with bevacizumab as first-line Therapy in patients with advanced non-squamous non-small-cell lung cancer harbouring EGFR mutations (J025567); an open-label, randomised, multicenter, phase 2 study", The Lancet 2014, 15 (11) 1236-1244.


Fruquintinib – Gastric combo with paclitaxel Phase III initiated Oct 2017 – Interim analysis planned early 2019

1. Dose proportional increase of fruquintinib AUC at steady state. Over 30% increase in paclitaxel drug exposure (mean AUC₀₋₈) following multiple dose fruquintinib.

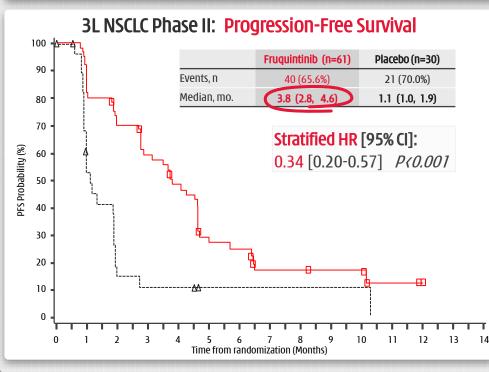
2. ORR of 36% (10/28) & DCR of 68% in efficacy evaluable pts. Fruquintinib 4mg, ≥ 16 wk. PFS of 50% & ≥ 7 mo. OS of 50%.

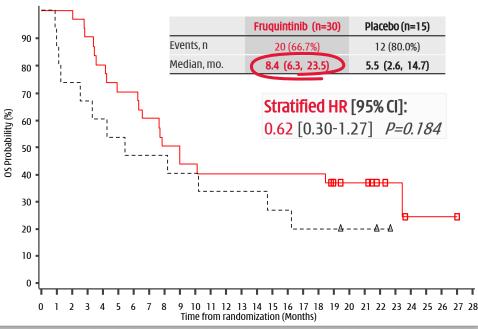
Encouragingly low level of dose reduction/interruption.
 Actual mean administered dose in the first cycle was
 3.32mg/day for fruquintinib (83.0% planned dose) & 78.6
 mg/m2/week for paclitaxel (98.3% planned dose).

Characteristics (Unit)	Drug Expansio Fruquintinib 4 mg +	n Stage (N=19) paclitaxel 80 mg/m²
	Drug interruption	Drug reduction
Dose modification with Fruquintinib N (%)	2 (10.5%)	2 (10.5%)
Dose modification with Paclitaxel N (%)	5 (26.3%)	1 (5.3%)

4. AE profile in-line with expectations. Neutropenia – a paclitaxel driven AE – with 57.9% Grade >3 AEs. Similar to 60% level seen in RAINBOW study of ramcirumab (VEGF mAb) combo with paclitaxel in second-line gastric cancer.

Drug related grade 3 or 4 AEs (NCI-CTCAE v 4.0) term	Dose Expansion Stage (N=19) Fruquintinib 4 mg + paclitaxel 80 mg/m²
Neutropenia	11 (57.9%)
Leukopenia	4 (21.0%)
Hypertension	2 (10.6%)
PLT decreased	1 (5.3%)
Anemia	1 (5.3%)
HFSR	1 (5.3%)
Mucositis oral	1 (5.3%)
Hepatic disorder	1 (5.3%)
Upper gastrointestinal hemorrhage	1 (5.3%)

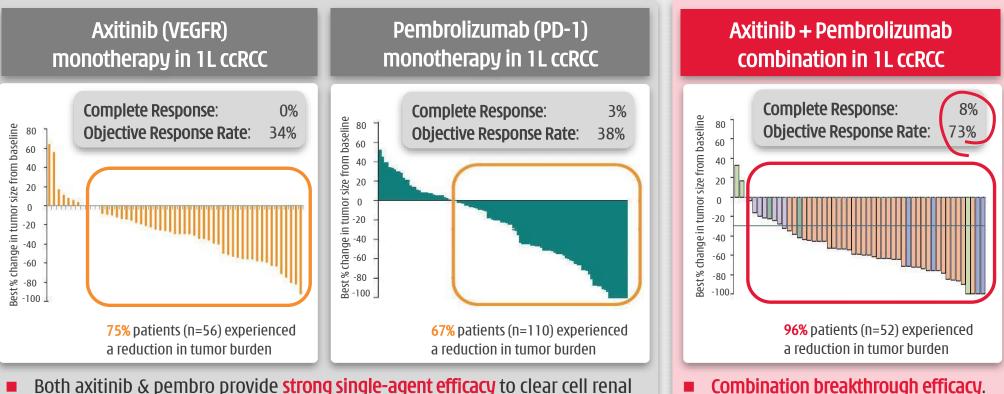

Fruquintinib – FALUCA Phase III in 3L NSCLC Phase III enrolment complete (n=527); top-line results Q4 2018



Non-small cell lung cancer ("NSCLC") Phase II PoC Results

- ✓ 91 <u>3L only</u> patients **enrolled in ∽9 months** (Jun'14-Mar'15).
- ✓ **Clearly met primary PoC endpoint** of reduction in risk of progression.
- ✓ AEs consistent with the known safety profile and generally superior versus ≥3L colorectal cancer Phase III with lower >Gr.3 AEs (32.8% vs. 61.1%) and dose reductions (13.1% vs. 24.1%).

Patients, %	Fruquintinib (n=61)	Placebo (n=30)
All AEs, any grade	61 (100%)	27 (90.0%)
All AEs, grade \geq 3	20 (32.8%)	6 (20.0%)
Hypertension, grade \geq 3	5 (8.2%)	1 (3.3%)
Hand-foot syndrome ("HFS"), grade \geq 3	3 (4.9%)	0
All other AEs, grade \geq 3 (each)	≤2 (≤3.3%)	0
Leading to dose interruption	9 (14.8%)	0
Leading to dose reduction	8 (13.1%)	0
Leading to treatment discontinuation	6 (9.8%)	1 (3.3%)



3L NSCLC Phase II: Overall Survival^[1]

[1] EGFR Mutation positive (n=45)

VEGFR / immunotherapy (PD-1s) combinations

- Both axitinib & pembro provide strong single-agent efficacy to clear cell renal cell carcinoma ("ccRCC").
- Combination breakthrough efficacy.
 U.S. FDA BTD^[1] granted Jul 2017.

Potent two prong attack - Anti-angiogenesis + activated T-cell response

[1] BTD = Breakthrough Therapy Designation; Source: 1. B. Rini et al, Lancet Oncol 2013 14(12) 1233-42, Axitinib with or without dose titration for first-line metastatic renal-cell carcinoma: a randomised double-blind phase 2 trial; 2. D.F. McDermott et al, ASCO 2018 #4500, Pembrolizumab monotherapy as first-line therapy in advanced clear cell renal cell carcinoma (accRCC): Results from cohort A of KEYNOTE-427; 3, M.B. Atkins et al, Lancet Oncol 2018 19(3) 405-15, Axitinib in combination with pembrolizumab in patients with advanced renal cell cancer: a non-randomised, open-label, dose-finding, and dose-expansion phase 1b trial. Corporate press release.

Fruquintinib & surufatinib both unique VEGFR TKIs ...ideal VEGFR combination partners for immunotherapy

TKI	1 st Generation		2 nd Generation		Next Generation			
Selectivity	Multiple targets			Relatively selective			Selective angio-immuno Highly selective kinase inhibitor	
Inhibitors	Sunitinib	Sorafenib	Anlotinib	Tivozanib	Lenvatinib	Axitinib	Fruquintinib	Surufatinib ^[1]
Status	Launched	Launched	Launched	Launched	Launched	Launched	Launched	Ph. IIIs ongoing
VEGFR1 (nM)	2	26	27	30	22	3	33	2
VEGFR2 (nM)	9	90	0.2	6.5	4	7	25	24
VEGFR3 (nM)	19	20	0.7	15	5	1	0.5	1
Phos-KDR (nM)	10	30	0.1-1	0.16	0.8	0.2	0.6	2
Other kinases (IC50 < 100nM)	PDGFR _α PDGFRβ c-Kit Flt3 Ret CSF-1R	Raf-1 b-raf Flt3 P38 c-Kit Ret	PDGFR _α PDGFRβ FGFR1-4 c-Kit	PDGFR _α PDGFR _β EphB2 c-Kit Tie2	PDGFR _α PDGFRβ FGFR1-4 Ret c-Kit	PDGFR _α PDGFR _β c-Kit	none	CSF-1R FGFR1 FLT3 TrkB
Patent Expiration					2021/10/19 (US7253286B2)	2025/04/29 (US6534524B1)	2029 (without extension)	2030 (without extension)

Fruquintinib is uniquely selective – unlike other TKIs with off-target toxicity
 Surufatinib inhibits TAM^[1] production – amplifying PD-1 induced immune response

67 [1] Surufatinib = HMPL-012, formerly known as sulfatinib; Source: 1. D.D. Hu-Lowe et al, Clin Cancer Res 2008 14(22) 7272-83; 2. Q.L. Sun et al, Cancer Biol Ther 2014 15(12) 1635-45.

Chi-Med immunotherapy collaborations

5 PD-1/PD-L1 combos underway/starting on savolitinib, fruquintinib & surufatinib

Surufatinib

Highly active TKI with unique angio-immuno activity

Surufatinib's unique angio-immuno kinase profile Multi-indication global development program, initially for NETs^[1]

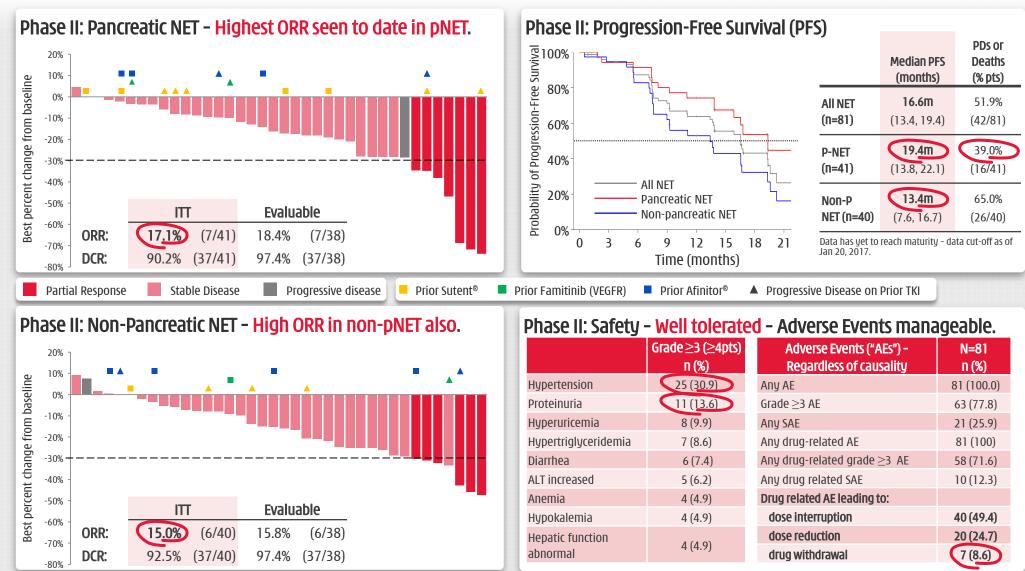
Surufatinib's unique angio-immuno kinase profile & MoA^[1] activates & enhances the body's immune system, namely T-cells, via VEGFR/FGFR while inhibiting the production of macrophages (CSF-1R) which cloak cancer

cells. EGFR / FGFR Anti-angiogenesis (minimize T-cell loss/seepage) Blood vessel Lymph node FGFR Immuno-Antigen release suppression (activation of T-cells) CSF-1R Blocks negative regulators (suppresses macrophage cloak)

Activity 1: Aiming for fast/first approval in China for all NET ^[2] patients – 2x pivotal Phase III trials in progress

	Pancreatic NET Phase III	Non-Pancreatic NET Phase III			
Primary site	Pancreas	GI, lung, other or unknown			
Population	Unresectable or metastatic disease; well differentiated (G1/G2); ≤ 2 prior systemic drugs.				
# of Sites	20-30 (China)				
# of Patients	∽195	~270			
Study design	Double-blind. Randomized 2:1 to surufatinib or placebo, until PD. Predefined interim analysis.				
Dosage	Surufatinib 300mg QD, 28 days per d				
Primary Endpoint	Progression-Free Survival (PFS) by BICR evaluation				
Secondary Endpoints	Overall Survival (OS), ORR, safety, etc.				
First Patient In / Readout	March 2016 / 2019	December 2015 / 2019			

Activity 2: Global development

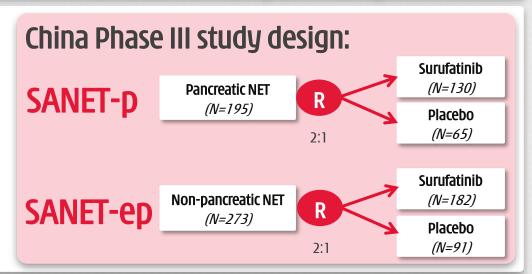

- U.S. Phase I (dose escalation) in solid tumors completed
- U.S. Phase Ib/II initiated in July 2018, focusing on pancreatic NET and biliary tract cancer
- PD-1 combination collaborations

Activity 3: Exploratory PoC^[3] in other indications

China Ph.II studies underway in: (a) medullary thyroid cancer;
 (b) differentiated thyroid cancer; and (c) biliary tract cancer.

Surufatinib – China NET – Phase II *(ENETS 2017*^[1]) Efficacy in all NET & patients who failed on Sutent[®]/Afinitor[®]

[1] ENETS = European Neuroendocrine Tumour Society. Data cut-off as of Jan 20, 2017.

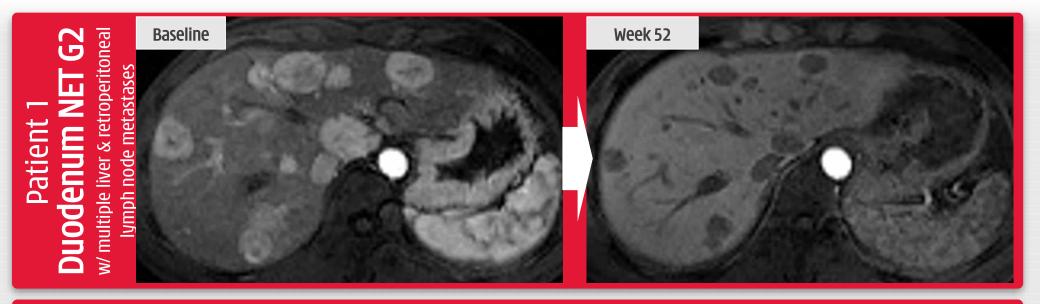

Surufatinib – global development First un-partnered asset through China PoC & started US study

Pancreatic NET ("P-NET") & Non-Pancreatic NET ("EP-NET")

- SANET-p & SANET-ep active in 25 China sites;
- Primary endpoint median PFS;
- Target to conduct Interim Analysis in 2019 on SANET-ep in H1 2019 & SANET-p in H2 2019;
- Enrolment expected for both Phase III studies to complete late 2019 / early 2020;
- Potential launch in China in late 2020 / 2021first un-partnered oncology asset for Chi-Med.

Biliary Tract Cancer ("BTC")

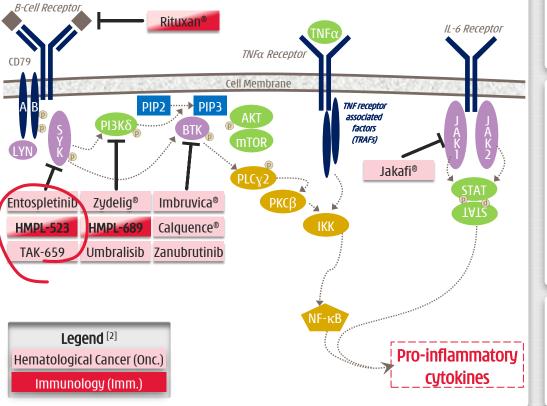
- Clear unmet medical need a few agents being tested in 2L BTC but standard of care not yet established;
- Phase II PoC initiated in early 2017;
- Planning for Phase II/III pivotal study in BTC in China is underway aiming to initiate (H1 2019.)

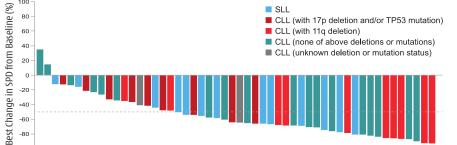

U.S. Development Expanding

- Phase I dose escalation study in the U.S. completed (N=29), 5 dose cohorts (50-400mg QD), established
 300mg. QD as RP2D (same as China);
- U.S. Phase Ib/II study in P-NET & BTC initiated (uly 2018)
- Chi-Med C&R Team now in place in U.S. to manage.

Surufatinib – China NET – Phase II *(ENETS 2017*^[1]) Tumor devascularization & central necrosis

Baseline Week 56




HMPL-523 – hematological malignancies Syk exciting target emerging – Lymphoma PoC ongoing

1. The B-cell signaling is critical in hematological cancer with three breakthrough therapies recently approved.

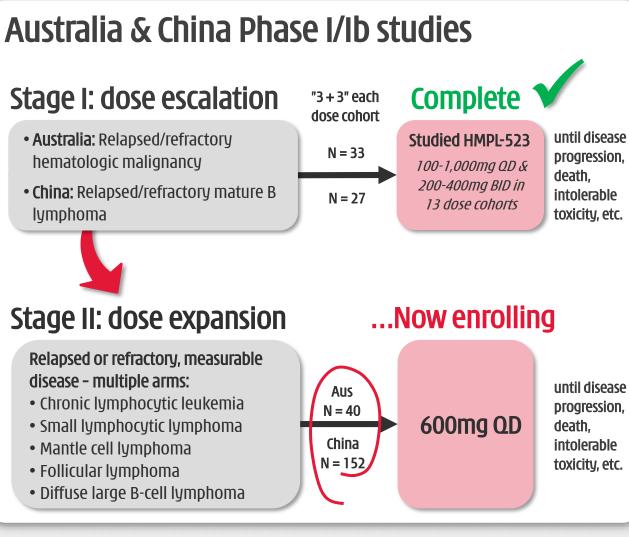

 2017 sales: Imbruvica[®] \$1.9bn; Zydelig[®] \$0.5bn; Jakafi[®] \$1.1bn; & Rituxan[®] \$6.0bn ^[1].

2. Entospletinib ASH ^[3] Dec 2015 data - 65% Nodal Response Rate in CLL & SLL ^{[4] [5]}.

3. Entospletinib potential for overcoming resistance/ intolerance to Zydelig® (PI3Kδ) & Imbruvica® (BTK)^[5].

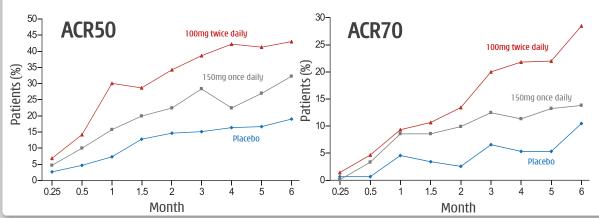
4. Entospletinib not a perfect compound ^[6].

- Poor solubility/oral absorption & high variation in drug exposure.
- Some CYP ^[6] inhibition & increased risk of drug-drug interaction.
- 66% Grade \geq 3 AEs, 49% SAEs; 46% drug interruption & 20% disco.


[1] Rituxan[®] 2017 sales in oncology only; [2] Approved Drug = ®; All others are clinical candidates; [3] ASH = American Society of Hematology; [4] Chronic lymphocytic leukemia ("CLL") & small lymphocytic lymphoma ("SLL"); [5] Sharman et al, ASH Meetings 2015 & 2016; [6] CYP3A4, CYP2D6 and CYP 1A2.

-100

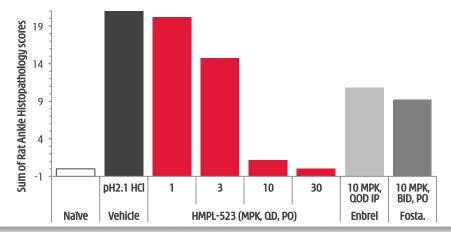
HMPL-523 (Syk) in hematological cancer Australia & China - Targe Phase ID expansion now moving faster



- Extensive Ph.I dose escalation study now complete in Australia & China (total n=60);
- Published China Ph.I dose escalation data 2018 ASH ^[1] conference;
- RP2D^[2] determined & large Ph.
 Ib dose expansion study, total
 n=192, underway in 13 active
 sites in Australia & China;
- US IND application cleared by FDA & planning underway for a Phase II PoC ^[3] study

HMPL-523 – immunology potential Superior selectivity, better target coverage & efficacy vs. fosta.

...but GI toxicity, infection & (23%) put on antihypertensives.

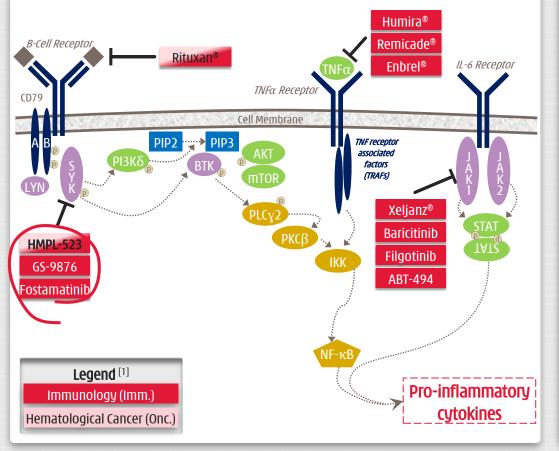

Percent of patients	Placebo (n = 153)	150mg QD (n = 152)	100mg BID (n = 152)
Diarrhea	3.0%	11.8% †	19.1%†
Upper respiratory infection	7.1	7.2	14.5 †
Urinary tract infection	4.6	3.3	5.9
Nausea	4.6	5.9	4.6
Neutropenia	0.7	6.6 †	5.9 †
Headache	5.2	6.6	5.9
Abdominal pain	2.6	6.6 †	5.9 †
ALT > 3x ULN	2.0	3.9	3.9
Dizziness	2.0	2.6	4.6
Hypothyroidism	2.6	2.6	3.3
Cough	2.6	2.0	3.3
† P < 0.05 for compariso	on with placebo gro	up; ALT = alanine	aminotransferase

2. HMPL-523 - far superior selectivity to fostamatinib...

1. Fostamatinib good Phase II^[1] RA^[2] dose response...

Selectivity	HMPL-523 IC ₅₀ (nM)	fostamatinib IC ₅₀ (nM)
Syk enzyme	25 ± 5 (n=10)*	54 ± 16 (n=10)*
JAK 1,2,3 enzyme	>300, >300, >300*	120, 30, 480*
FGFR 1,2,3	>3,000, >3,000, >3,000	89, 22, 32*
FLT3 enzyme	63*	9*
LYN enzyme	921*	160*
Ret enzyme	>3,000*	5**
KDR enzyme	390 ± 38 (n=3)*	61 ± 2 (n=3)*
KDR cell	5,501 ± 1,607 (n=3)*	422 ± 126 (n=3)*

...and very strong efficacy in preclinical RA models.



[1] Fostamatinib is a prodrug of the SYK inhibitor R406 - Phase II study data per N ENGLJ MED 363;14; *: HMPL data and Eun-ho Lee, 2011; ** Birth Defects Research (Part A) 2009, 85: 130-6; [2] RA = Rheumatoid Arthritis; GI = Gastrointestinal; QD = one dose per day; BID = two doses per day; QOD = one dose every other day; PO = by mouth (i.e. orally); IP = by Intraperitoneal injection; Naïve = model score without induced arthritis.

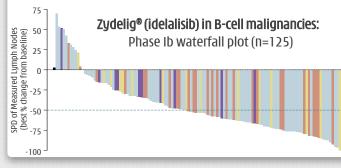
HMPL-523 – immunology potential

1. Syk, the most upstream B-cell pathway kinase target is clinically validated in rheumatoid arthritis ("RA"), but we believe currently Chi-Med & Gilead are the only companies pursuing.

2. RA expected to be a **\$45 billion**^[2] market in 2020 with B-cell pathway; anti-TNF; & JAK the main focus.

(Methotrexate-IR: placebo adjusted)	ACR20	ACR50	ACR70	2017 Sales (\$ billion) ^[3]
B-Cell receptor mAbs				
Rituxan® (24-Week)	33%	21%	11%	1.6
Anti-TNFα/NF-κB mAbs				
Humira® (24-Week)	33%	29%	18%	18.4
Remicade [®] (24-Week)	30%	22%	8%	6.3
Enbrel® (24-Week)	44%	36%	15%	7.9
JAK Inhibitors Small molecules				
Xeljanz® (24-Week)	25%	23%	13%	1.3
Xeljanz® (12-Week)	28%	21%	8%	2.1
baricitinib 4mg QD (12-Week)	30%	28%	14%	n/a
filgotinib 100mg BID (12-Week)	35%	40%	23%	n/a
ABT-494 24mg QD (12-Week)	32%	24%	18%	n/a
Syk Inhibitor Small molecule				
fostamatinib 100mg BID (24-Week) 🤇	32%	24%	18%	💙 n/a

- 3. Substantial market potential remains in RA.
- mAbs intravenous administration and shut down immune system for 4-6 weeks - high infection / lymphoma risks.
- First-in-class JAKs in RA limited by compound-related tox.
- Syk inhibition shown to benefit patients but fostamatinib failed due to major off-target toxicity.


[1] Approved drug = (0; All other clinical candidates: mAb = antibody (extracellular); small molecule (intracellular); [2] Frost & Sullivan; [3] 2017 sales in immunology only.

HMPL-689 – Phase I Australia & China ongoing Designed to be a best-in-class inhibitor of PI3K δ

1. PI3K δ now a proven target.

- PI3Kδ activation associated with allergy, inflammation & oncology.
- Evidence that PI3Kδ inhibitors effective in ibrutinib-resistant mutant population.

3. HMPL-689 -- Important asset.

Designed to improve on existing $\text{PI3K}\delta$ inhibitors:

- Improved isoform selectivity (sparing PI3Kγ).
- Improved potency at whole blood level (>5x more potent than idelalisib) to cut compound related toxicity.
- Improved PK properties particularly efflux and drug/drug interaction due to CYP inhibition / induction, critical for combo therapy.

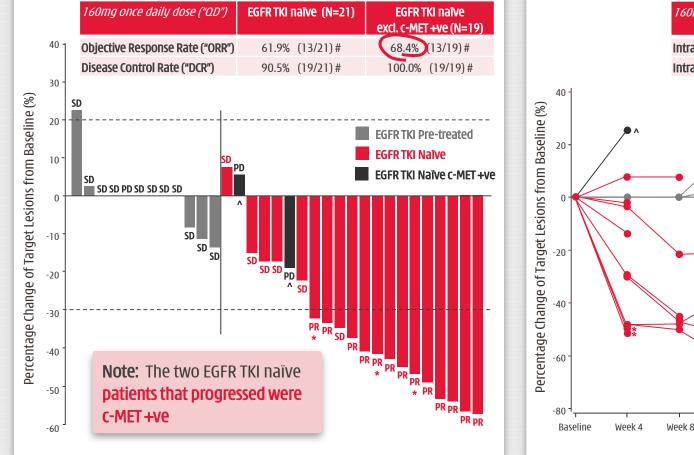
2. PI3K δ inhibitors being developed in a very broad range of indications.

Compound		Indication	Status	Issue
Zydelig® (idelalisib) PI3K&	Gilead	Chronic lymphocytic leukaemia, non-Hodgkin's lymphoma	Marketed	High incidence of liver toxicity seen with idelalisib (150mg bid)
AMG-319 PI3Kδ	Amgen	B-cell lymphoma, non-Hodgkin's lymphoma, T-cell lymphoma, chronic lymphocytic leukaemia	Phase I Trial	
Copiktra®	Verastem/	Relapsed or refractory chronic lymphocytic leukaemia / small lymphocytic lymphoma	Approved	Need to spare PI3Ky serious infection seen &
(duvelisib) PI3Kγ/δ		Relapsed or refractory follicular lymphoma	Approved ^[2]	associated with a boxed warning for 4 fatal and/or
		Peripheral T-cell lymphoma	Phase II enrolling	serious toxicities
Aliqopa® (copanlisib) PI3Kα/δ	Bayer	Relapsed follicular B-cell non-Hodgkin lymphoma	Approved ^[2]	Serious and fatal infections and AEs

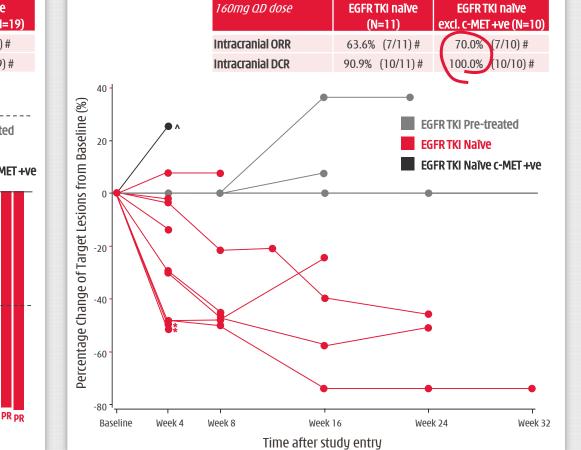
4. More potent / more selective than Zydelig[®], Copiktra[®] & Aliqopa[®].

Enzyme IC ₅₀ (nM)	HMPL-689	Zydelig®	Copiktra[®]	Aliqopa®
РІЗКδ	0.8 (n = 3)	2	1	0.7
PI3Kγ (fold vs. PI3Kδ)	114 (142x)	104 <mark>(52x)</mark>	2 (<u>2X</u>)	6.4 (9x)
PI3K _α (fold vs. PI3Kδ)	>1,000 (>1,250x)	866 (433x)	143 (143x)	0.5 (1X)
PI3Kδ human <u>whole blood</u> CD63+	3	14	15	n/a
PI3Kβ (fold vs. PI3Kδ)	87 <mark>(109x)</mark>	293 (147x)	8 (8X)	3.7 (5x)

[1] AbbVie ended collaboration with Infinity in June 2016 following Phase II results in indolent non-Hodgkin's lymphoma. Duvelisib now licensed to Verastem; [2] Accelerated approval was granted based on ORR, and continued approval may be contingent upon verification and description of clinical benefit in a confirmatory trials.

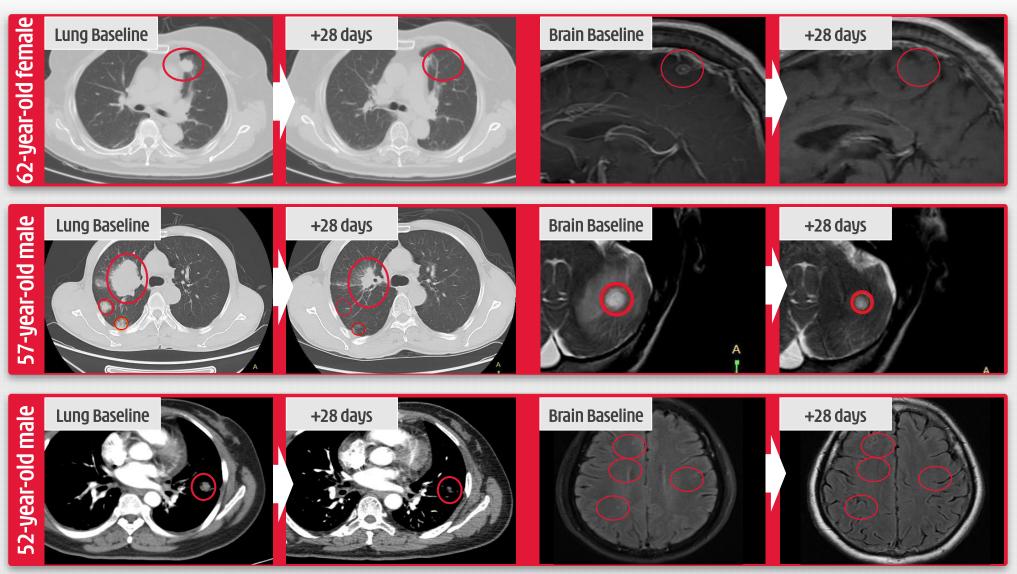


Epitinib – 70% response in NSCLC w/ brain mets^[1] Unmet medical need for ~50% of NSCLC patients w/ brain mets^[2]



1. Phase Ib ^[1] – epitinib monotherapy in EGFRm+ NSCLC patients – <u>efficacy in lung</u> in-line with Iressa[®]/Tarceva[®].

81


2. Phase Ib^[1] - solid/durable <u>efficacy in brain</u> in EGFRm+ NSCLC patients with measurable brain mets (>10mm).

[1] Dose expansion stage – data cut-off September 20, 2016; [2] Li B, Bao YC, Chen B, *et al.* Therapy for non-small cell lung cancer patients with brain metastasis. Chinese-German J Clin Oncol, 2014, 13: 483–488; * Unconfirmed PR, due to no further assessment at cut-off date; # Includes both confirmed and unconfirmed PRs; ^ C-MET amplification/high expression identified.

Epitinib – Strong PoC efficacy – 160mg QD dose

Epitinib - Safe & well tolerated

3. Epitinib well tolerated by patients^[1] w/advanced solid tumors. Safety profile is consistent with that of approved EGFR-TKIs (e.g. Iressa[®]/ Tarceva[®]).

Dose Escalation Stage (n=35*) (Drug related AEs reported >10%)			Dose Expansion Stage (n=37) (Drug related AEs reported >10%)				
160mg QD dose	All Grades n (%)	Grade 3/4 n (%)	160mg QD dose	All Grades n (%)	Grade 3/4 n (%)		
Skin rash	21 (60.0%)	1 (2.9%)	Skin rash	31 (83.8%)	2 (5.4%)		
Diarrhea	12 (34.3%)	-	Hyper-pigmentation	18 (48.6%)	1 (2.7%)		
AST increase	12 (34.3%)	1 (2.9%)	ALT increase	15 (40.5%)	7 (18.9%)		
ALT increase	11 (31.4%)	1 (2.9%)	AST increase	15 (40.5%)	4 (10.8%)		
Total bilirubin increase	10 (28.6%)	2 (5.7%)	ASP increase	11 (29.7%)	1 (2.7%)		
Stomatitis	5 (14.3%)	-	Diarrhea	10 (27.0%)	-		
Exfoliative dermatitis	5 (14.3%)	-	Proteinuria	10 (27.0%)	-		
Pruritus	5 (14.3%)	-	Total bilirubin increase	9 (24.3%)	1 (2.7%)		
Hyper-pigmentation	4 (11.4%)	-	Hyperuricemia	9 (24.3%)	2 (5.4%)		
Gamma-GGT increase	4 (11.4%)	2 (5.7%)	Gamma-GGT increase	7 (18.9%)	4 (10.8%)		
Conjugated bilirubin	4 (11.4%)	1 (2.9%)	Stomatitis	6 (16.2%)	-		

4. EGFR gene amplified Glioblastoma (primary brain tumors):

Phase Ib/II proof-of-concept underway.

CASE STUDY – EGFR-TKI naïve patient

- Male, 46, diagnosed with Stage IV NSCLC adenocarcinoma (Exon21)
- Metastases in the brain, meninges, & bone
- 1st-line chemo naïve
- 120mg QD dosage
- 25 weeks (177 days) on treatment with clear response in multiple measurable (>10mm diameter) brain lesions

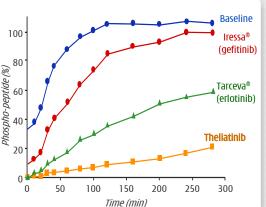
171223 7/17/2017 4:47 PM

100050 1/10/2018 8:30 AM

[1] No Dose Limiting Toxicity ("DLT") was observed in any cohort; * One patient did not join multiple dosing.

83

Theliatinib Potent & highly selective TKI – strong affinity to EGFRwt kinase

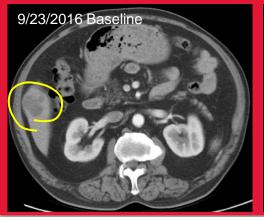

1. Major unmet medical need for wild-type EGFR activation tumors.

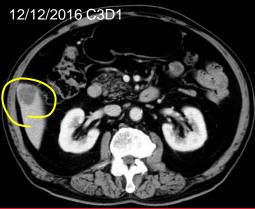
- EGFR activation affects multiple tumor types. Current EGFR TKIs are less effective in treating solid tumors with wild-type EGFR activation (gene amplification & protein over expression).
- Phase Ib expansion study on theliatinib in esophageal cancer is currently underway in China.

	andennagin		Iressa [®] , Tarceva [®]
Tumor Types	Wild-type: Gene Amplification	Wild-type: Over Expression	Mutations
NSCLC	29%	62%	10-30%
Esophagus	8-30%	30-90%	12% (esophageal adenocarcinoma)
Stomach	29%	44-52%	<5%
Glioblastoma	36-51%	54-66%	27-54% (EGFR variant III)
Colorectal	4.5%	53%	8%
Head and neck	10-30%	66-84%	42% (EGFR variant III)
			MAbs approved: Erbitux®, Vectibix®

2. Superior anti-tumor activity of theliatinib in pre-clinical studies with wild-type EGFR.

- 5-10-fold more potent than Tarceva[®].
- Sustained target occupancy.

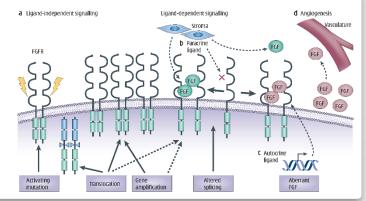

3. Esophageal cancer (EC): No effective treatment options.


 Major issue in Asia with poor prognosis: 5-year survival 10-20%

CASE STUDY - EGFR protein over expression

- May 4, 2016: Man, 62, stage IV esophageal squamous cell cancer cT3N0M1with liver metastasis. High protein overexpression - EGFR IHC local test: >75% of tumor cells 3+.
- May 4 to Sep 23, 2016: nimotuzumab/placebo + paclitaxel + cisplatin 6 cycles with best tumor response: PD.
- Oct 11, 2016: began theliatinib 400mg daily.
- Dec 12, 2016: Cycle 3 Day 1 (C3D1) tumor assessment: Target lesion (liver metastasis) shrank -33% (36mm to 23mm diameter) – unconfirmed PR.
- Jan 23, 2017: Withdrew from study due to AEs Gr 1 (diarrhea/pruritus/dental ulcer), Gr 2 (epifolliculitis/dermatitis).

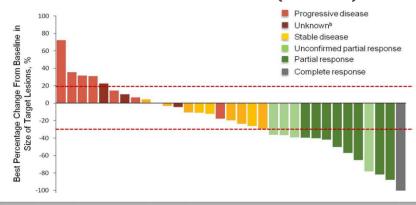
TKIs = tyrosine kinase inhibitors; MAbs = monoclonal antibodies. [1] GLOBOCAN 2012 (http://globocan.iarc.fr/) and Chen W et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016; 66:115-132


85

HMPL-453 – Phase I in China ongoing Designed as first-in-class FGFR1/2/3 inhibitor

1. FGFR genetic alterations are oncogenic drivers.


- **FGF/FGFR** signaling normally involved in embryonic development, tissue repair, angiogenesis, neuroendocrine and metabolism homeostasis.
- Multiple oncogenic driver genetic alterations in FGFR pathway: gene amplification, mutation, translocation, fusion, splicing, etc.


2. FGFR – diverse & complicated genetic changes with multiple tumor types harboring low incidence.

	Gene amplification	Gene translocation	Gene mutation
FGFR1	Lung squamous (7∽15%) H&N squamous (10∽17%) Esophageal squamous (9%) Breast (10∽15%)	Lung squamous (n/a) Glioblastoma (n/a) Myeloproliferative syndrome (n/a) Breast (n/a)	Gastric (4%) Pilocytic astrocytoma (5~8%)
FGFR2	Gastric (5∽10%) Breast (4%)	Intra-hepatic biliary tract cancer (cholangiocarcinoma) (14%) Breast (n/a)	Endometrial (12~14%) Lung squamous (5%)
FGFR3	Bladder (n/a) Salivary adenoid cystic (n/a)	Bladder (3~6%); Lung squamous (3%); Glioblastoma (3%) Myeloma (15~20%)	Bladder (60~80% NMIBC; 15~20 MIBC) Cervical (5%)

- 3. Biliary Tract Cancer (cholangiocarcinoma) and bladder cancer have made much progress in clinic to date.
 - BGJ398 Phase II PoC in biliary tract cancer (2016 ASCO GI).

BGJ398 Phase II PoC in bladder cancer (2016 ASCO).

H1 2018 Financial Results Including \$66.7 million in innovation investment [1][2]

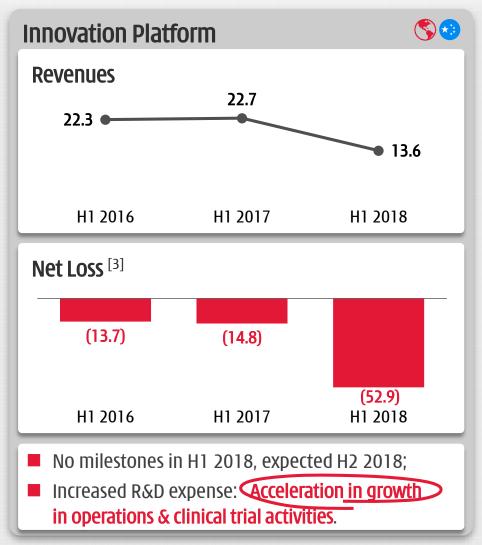
88

	H1- H1-		H1-	Change		
	2016	2017	2018	16-17	17-18	
REVENUES	104.5	126.6	102.2	21%	-19%	
Unconsolidated JV Revenues [3]	227.5	224.2	271.7	-1%	21%	
NET INCOME/(LOSS) ^[2]						
INNOVATION PLATFORM	(13.7)	(14.8)	(52 <u>.9</u>)	-8%	-258%	
Base HMP Operations	(11.6)	(12.4)	(50.5)			
50% share of Nestle JV (NSP) [4]	(2.1)	(2.4)	(2.4)			
COMMERCIAL PLATFORM	22.1	22.7	26.9	2%	19%	
Prescription Drugs Business	15.3	16.9	20.8			
Consumer Health Business	6.8	5.8	6.1			
Chi-Med Group Costs	(7.9)	(8.7)	(6.7)	-10%	23%	
General & Administrative Expenses	(5.8)	(6.6)	(4.9)			
Interest/Tax	(2.1)	(2.1)	(1.8)			
R&D Related Subsidies	-	2.5	-	100%	n/a	
Net Income/(Loss) Attrib. to Chi-Med	0.5	1.7	(32.7)	213%	n/a	
EPS Attrib. to Ord. S-H (Basic) (US\$)	0.01	0.03	(0.49)			

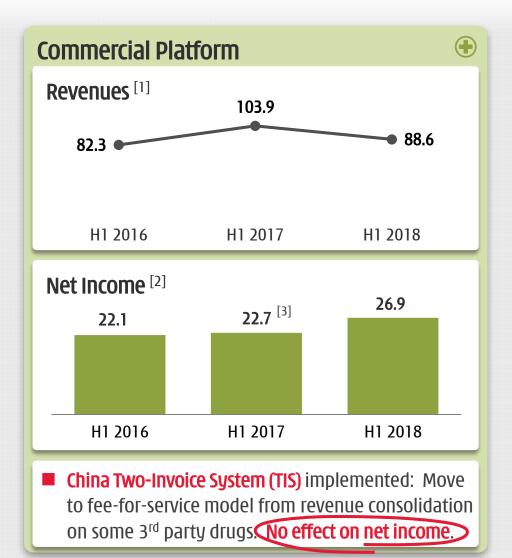
Group Results Revenues 126.6 102.2 104.5 H1 2016 H1 2017 H1 2018 Net Income/(Loss)^[5] 1.7 0.5 (32.7)

H1 2017

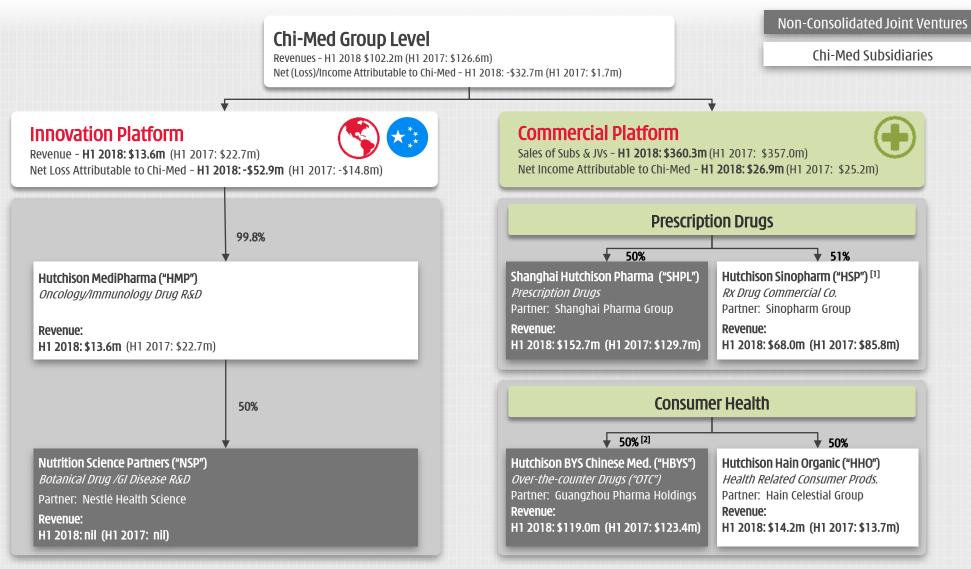
H1 2016


R&D expenses (Non-GAAP); H1 2017: \$37.5m; [2] GAAP R&D expenses were \$60.1m in H1 2018 (H1 2017: \$31.6m) - please see appendix "Non-GAAP Financial Measures and Reconciliation";
 Excluding Guanbao (divested); [4] NSP = Nutrition Science Partners Limited; [5] Net Income/(Loss) = Net Income/(Loss) Attributable to Chi-Med.

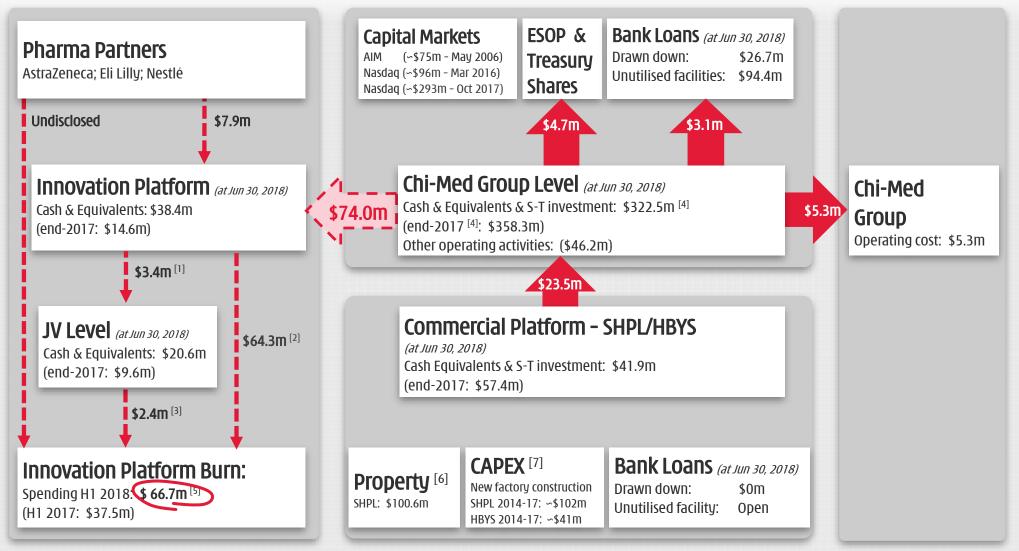
H1 2018



Financial Performance of Main Platforms


89

[1] Only includes revenues of subsidiaries for Prescription Drugs and Consumer Health businesses – excludes joint ventures; [2] Adjusted Net Income/(Loss) = Adjusted Net Income/(Loss) attributable to Chi-Med (non-GAAP); (US\$ millions) [3] Excludes the share of a one-time gain from SHPL's R&D related subsidies of US\$2.5 million.


Chi-Med Group Structure - Major Entities

[1] Excluded HSP's ZLT business; [2] Held through an 80% owned subsidiary.

Inter-group cash flow \$322.5m cash (Jun 30, 2018); \$94.4m in undrawn bank facilities

[1] \$8.0m capital injection to NSP offset by \$4.6m service income received from NSP; [2] Including research & development cost and general & admin. expenses; [3] Share of NSP operating loss; [4] Including \$247.2m short-term investment (91-183 day deposit) as at end of June 2018; [5] Please see appendix "Non-GAAP Financial Measures and Reconciliation" for a Reconciliation of GAAP to adjusted research and development expenses; [6] Cash received for SHPL land compensation; [7] CAPEX required to build new Shanghai (SHPL) and Bozhou (HBYS) factories.

91

China Commercial Platform has substantial value

- Chi-Med's Commercial Platform continues to perform well relative to our peer group.
- The market value, based on China Pharma PE multiples is approximately \$2.9 3.1 billion.^[1] Given our share in the JVs, Chi-Med's share of this value is approximately \$1.4 1.5 billion.

		NET SALES			NET INCOME				VALUA	VALUATION ^[3]	
	Code	2016 Jan-Dec	2017 Jan-Dec	FY16-17 Growth	2016 Jan-Dec	2017 Jan-Dec	FY16-17 Growth	FY2017 Margin	Market Cap.	P/E	
CHI-MED Commercial Platform Subsidiaries/JVs ^[2]		627.4	677.2	8%	63.3	77.3	22%	11%	n/a	n/a	
 Tianjin Zhong Xin Pharma	600329	925.0	851.7	-8%	61.0	70.8	16%	8%	2,039	22	
Li Zhu Pharma	000513	1,145.5	1,277.1	11%	102.0	122.8	20%	9.6%	4,727	38	
Shandong Dong E E Jiao	000423	945.7	1,103.6	17%	277.7	306.0	10%	28%	5,242	20	
Zhejiang Kang En Bai Pharma	600572	901.3	792.5	-12%	60.5	109.3	81%	14%	3,046	23	
Kunming Pharma	600422	763.6	876.1	15%	61.3	50.2	-18%	6%	972	25	
Guizhou Yi Bai Pharma	600594	551.9	570.0	3%	58.9	61.0	4%	11%	1,069	23	
Jin Ling Pharma	000919	535.7	477.8	-11%	33.3	25.9	-22%	5%	573	30	
Jiangsu Kang Yuan	600557	449.1	490.2	9%	56.3	56.6	1%	12%	1,136	22	
Zhuzhou Qian Jin Pharma	600479	428.9	476.5	11%	26.0	36.9	42%	8%	651	26	
ZhangZhou Pian Zai Huang	600436	345.7	556.0	61%	75.9	116.8	54%	21%	11,196	55	
Peer Group Weighted Avg. (10 Comps. excl. Chi-Med)		699.2	747.2	7%	81.3	95.6	18%	13%	3,065	37	
All 61 Listed China Pharma. Companies Weighted Average		1,155.1	1,270.1	10%	96.0	123.5	29%	10%	3,533	40	

Peer Group: 10 companies (excl. Chi-Med) selected as ALL listed and profitable mainland Chinese OTC/RX pharma manufacturing companies, with a focus on similar product types, and FY2017 Net Sales in the ~\$400-1,300 million range.

Source: Company data, Deutsche Bank, FactSet

[1] Peer group/China Pharma multiple of 37x-40x 2017 actual Net income after tax of \$77.3 million (excluding SHPL's R&D related subsidies of US\$5.0 million at net income after tax);

[2] Total aggregate PRC domestic results of Chi-Med's 6 Commercial Platform companies (HBYS, SHPL, Hutchison Sinopharm, HHO, HHL & HCPL), excluding discontinued operations and land compensation from SHPL;

[3] Market Capitalization and Price Earnings Ratios as at July 19, 2018: Trailing Twelve Month PE weighted averaged based on market capitalization.

Deep portfolio of household name drugs

Top 7 products represent 71% of sales^[1] and 90% of gross profit^[1]

Main Products	s ^[2] – SALES (Non-GAAP)	2012	2013	2014	2015	2016	2017	H1 2017	H1 2018
· 小田 ·	<i>SXBX pill</i> Coronary artery disease (Rx) 15.4% National market share Patent expiry 2029	102,215 <i>+29%</i>	123,587 +21%	138,848 +12%	159,326 +15%	195,371 +23%	209,246 +7%	110,384 +0%	129,806 +18%
	Banlangen granules Anti-viral/flu (OTC) 53% National market share	65,381 +14%	72,300 +11%	55,573 <i>-23%</i>	54,793 - <i>1%</i>	56,664 +3%	59,898 +6%	28,253 - <i>12%</i>	37,899 +34%
	FFDS tablet Angina (OTC) 38% National market share	60,181 +6%	69,996 +16%	76,297 +9%	60,154 -21%	59,906 <i>0%</i>	58,936 -2%	36,059 -4%	32,767 - <i>9%</i>
Seroquel XR and	<i>Seroquel tablets</i> Bi-polar/Schizophrenia (Rx) 6% National market share	n/a	n/a	n/a	21,131	34,380 +63%	35,359 +3%	18,900 +10%	16,993 ^[3] - <i>10%</i>
	<i>NXQ tablet</i> Cerebrovascular disease (OTC) Proprietary formulation	6,933 <i>+85%</i>	10,142 +46%	14,681 +45%	17,581 +20%	21,000 +19%	20,408 - <i>3%</i>	8,744 -6%	17,026 +95%
	<i>KYQ granules</i> Periodontitis (OTC) >90% National market share	16,351 +6%	16,318 <i>0%</i>	18,370 <i>+13%</i>	17,051 -7%	17,210 +1%	17,620 +2%	7,707 <i>-23%</i>	10,820 +40%
	Danning tablet Gallbladder/stone (Rx) Patent expiry 2027	11,648 <i>+17%</i>	12,364 +6%	13,822 +12%	13,526 -2%	9,041 <i>-33%</i>	16,089 <i>+78%</i>	8,762 +62%	9,510 +9%

[1] Based on aggregate Non-GAAP sales and gross profit of consolidated subsidiaries and non-consolidated joint ventures of Commercial Platform, please see appendix "Non-GAAP Financial Measures and Reconciliation"; [2] Rx = prescription drug; OTC = over-the-counter drug; SXBX pill = She Xiang Bao Xin pill; FFDS tablet = Fu Fang Dan Shen tablet; NXQ tablet = Nao Xin Qing tablet; KYQ granules = Kou Yan Qing granules; Market shares according to Frost & Sullivan or QuintilesIMS; [3] From October 2017, the majority of sales changed to a fee-for-service model due to the CNDA Two-invoice policy. Net service fee increased by 75% from H1 2017: \$5.5m to H1 2018: \$9.6m.

(US\$'000) (Growth % vs. Year Ago)

Non-GAAP Financial Measures and Reconciliation (1/2)

Reconciliation of Adjusted Research and Development Expenses:

	H1 2018	H1 2017
Research and development expenses	(60.1)	(31.6)
Plus: Innovation Platform — administrative and other expenses	(4.3)	(3.6)
Plus: Equity in earnings of equity investees — NSP and other	(2.3)	(2.4)
Plus: Innovation Platform — interest income	0.0	0.1
Adjusted research and development expenses	(66.7)	(37.5)

Reconciliation of Top 7 products' Gross Profit as Percentage of Aggregated Gross Profit for Commercial Platform:

	H1 2018
Sales of goods — third parties and related parties	88.6
Less: Costs of sales of goods — third parties and related parties	(71.9)
Consolidated gross profit	16.7
Plus: Gross profit — HBYS and SHPL	168.0
Adjusted gross profit	184.7
Top 7 products gross profit	166.0
% of Top 7 products to adjusted gross profit	90%

Non-GAAP Financial Measures and Reconciliation (2/2)

Reconciliation of Non-GAAP Sales and Non-GAAP Net (loss)/income after tax^[1]

Prescription Drugs: includes our Consolidated subsidiary (Hutchison Sinopharm) and Non-consolidated joint venture (SHPL);

Consumer Health: includes our Consolidated subsidiaries (HHO, HHL and HCP) and Non-consolidated joint venture (HBYS).

	IFRS									US GAAP							H1'17- H1'18	
(US\$ millions)	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	H1'17	H1'18	Growth
Sales (Non-GAAP)	21.9	27.9	65.1	101.4	119.0	155.8	197.0	236.4	278.6	360.7	402.3	465.4	518.9	627.4	677.2	357.0	360.3	1%
Prescription Drugs	17.2	21.8	23.3	23.2	28.1	<i>39.5</i>	54.4	71.2	92.4	116.5	1 <i>38.2</i>	204.9	286.6	372.3	411.0	215.5	220.7	2%
- Consolidated subsidiary	-	-	-	-	-	-	-	-	-	-	-	50.2	105.5	149.9	166.4	85.8	68.0	-21%
- Non-consolidated joint venture	17.2	21.8	23.3	23.2	28.1	39.5	54.4	71.2	92.4	116.5	138.2	154.7	181.1	222.4	244.6	129.7	152.7	18%
Consumer Health	4.7	6.1	41.8	78.2	90.9	116.3	142.6	165.2	186.2	244.2	264.1	260.5	232.3	255.1	266.2	141.5	139.6	-1%
- Consolidated subsidiaries	4.7	6.1	<i>9.3</i>	8.9	3.7	5.5	7.0	14.1	14.9	15.5	16.5	16.8	20.7	31.0	38.8	18.1	20.6	14%
- Non-consolidated joint venture	-	-	32.5	69.3	87.2	110.8	135.6	151.1	171.3	228.7	247.6	243.7	211.6	224.1	227.4	123.4	119.0	-4%
Total Sales Growth	n/a	27%	133%	56%	17%	31%	26%	20%	18%	<i>29%</i>	n/a	16%	11%	21%	8%		1%	
- GuanBao divested in Sept 2017	-	-	-	-	-	-	-	-	(11.4)	(50.5)	(51.6)	(49.7)	(40.7)	(45.0)	(38.6)	(29.0)	-	n/a
Adjusted Consumer Health excl. GuanBao	4.7	6.1	41.8	78.2	90.9	116.3	142.6	165.2	174.8	193.7	212.5	210.8	191.6	210.1	227.6	112.5	139.6	24%
- Adjusted Non-consolidated joint venture	-	-	32.5	69.3	87.2	110.8	135.6	151.1	159.9	178.2	196.0	194.0	170.9	179.1	188.8	94.4	119.0	26%
Adjusted Sales excl. GuanBao (Non-GAAP)	21.9	27.9	65.1	101.4	<i>119.0</i>	155.8	197.0	236.4	267.2	310.2	350.7	415.7	478.2	582.4	638.6	328.0	360.3	10%
Total Adjusted Sales Growth	n/a	27%	133%	56%	17%	31%	26%	20%	13%	16%	13%	1 <i>9</i> %	15%	22%	10%		10%	
Net (loss)/income attrib. to Chi-Med	(5.7)	(3.7)	(0.5)	1.2	4.5 ^[2]	5.9 ^[2]	9.3 ^[2]	12.6 ^[2]	13.6 ^[2]	14.6 ^[2]	18.2 ^[2]	22.8 ^[2]	25.2 ^[2]	29.9 ^[3]	37.5 ^[4]	22.7 ^[4]	26.9	19%
Prescription Drugs	(0.2)	0.6	1.0	0.7	0.9	1.4	3.0	5.9	7.1	8.8	11.2	13.2	15.9	20.7	26.5	16.9	20.8	23%
Consumer Health	(5.5)	(4.3)	(1.5)	0.5	3.6	4.5	6.3	6.7	6.5	5.8	7.0	9.6	9.3	9.2	11.0	5.8	6.1	7%
Net (loss)/income attrib. to Chi-Med growth	n/a	-35%	-86%	340%	275%	31%	58%	35%	8%	7%	n/a	26%	10%	19%	25%		19%	

[1] 2003-2006 incl. disco. operation; [2] Continuing Operations; [3] Excludes the land compensation from SHPL of US\$40.4 million at net income attributable to Chi-Med; [4] Excludes SHPL's R&D related subsidies of US\$2.5 million at net income attributable to Chi-Med for 2017 and H1 2017.

National Drug Reimbursement List Pricing ("NDRL") July'17 update – 15 new drugs in oncology^[1] added to NDRL

		L	Init Pricing (US\$) [3]		Approximate Mor	thly Pricing (L	JS\$) ^[3]	
Brand (generic)	Company	Dosage	Avg. Tender	Reimbursed	Δ %	Dosage	Avg. Tender	Reimbursed	Indication coverage
Herceptin® (trastuzumab)	Roche	440mg:20ml	\$3,298.81	\$1,125.93	-66%	Breast: 4mg/kg wk 1, 2mg/kg weekly. ^[2]	\$4,500	\$1,540	Breast: Her2+; Her2+ meta. Her2+ late-stage meta. gastric.
Avastin® (bevacizumab)	Roche	100mg:4ml	\$772.74	\$296.00	-62%	10mg/kg Q2W.	\$11,590	\$4,440	Late-stage meta. CRC or advanced non-squamous NSCLC.
TheraCIM ^{®[4]} (nimotuzumab)	Biotech Pharma	50mg:10ml	\$435.26	\$251.85	-42%	100mg weekly.	\$3,730	\$2,160	Combo with radiotherapy for EGFR+ Stage III/IV nasopharyngeal carcinoma.
Rituxan® (rituximab)	Roche	500mg:50ml ^[2]	\$2,544.74	\$1,228.15	-52%	375 mg/m² weekly.	\$13,090	\$6,320	Restorative or resistant follicular central type lym.; CD20+ stage III-IV follicular NHL, CD20+ DLBCL.
Tarceva® (erlotinib)	Roche	150mg ^[2]	\$68.15	\$28.89	-58%	150mg QD.	\$2,040	\$870	Advanced NSCLC with limited EGFR gene mutation.
Nexavar® (sorafenib)	Bayer	0.2g	\$60.44	\$30.07	-50%	400mg BID.	\$7,250	\$3,610	Unresectable RCC. Unresectable HCC. meta. Diff. thyroid after radio-iodine therapy.
Tykerb® (lapatinib)	GSK	250mg	\$17.63	\$10.37	-41%	1,500mg QD.	\$3,170	\$1,870	Adv./meta. breast cancer with Her2 O/E, after anthracycline, paclitaxel, trastuzumab.
AiTan® (apatinib)	Hengrui	425mg ^[2]	\$47.85	\$30.22	-37%	850mg QD.	\$2,870	\$1,810	3L gastric adenocarcinoma or esophageal junction with adenocarcinoma.
Velcade® (bortezomib)	L&L	3.5mg ^[2]	\$1,873.78	\$906.07	-52%	1.3mg/m² quartic every 3 wks.	\$6,360	\$3,080	Myeloma; recurring or refractory mantle cell lymphoma.
EnDu® (rh-endostatin)	Simcere	15mg	\$132.15	\$93.33	-29%	7.5mg/m² iv QD 2-wks- on / 1-week-off.	\$2,110	\$1,490	Late-stage NSCLC.
Epidaza® (chidamide)	Chipscreen	5mg	\$81.48	\$57.04	-30%	30mg QD, 2x per wk.	\$4,190	\$2,930	2L+ Recurring or refractory peripheral T-cell lymphoma (PTCL).
Zytiga® (abiraterone)	1&I	250mg	\$45.63	\$21.48	-53%	1,000mg QD.	\$5,480	\$2,580	Metastatic or ovariectomized prostate cancer.
Faslodex® (fulvestrant)	AstraZeneca	250mg:5ml	\$806.81	\$355.56	-56%	500mg per month.	\$1,610	\$710	Advanced ER/PR+ breast can., failing aromatase inhibitor.
Afinitor® (everolimus)	Novartis	5mg ^[2]	\$36.44	\$21.93	-40%	10mg QD.	\$2,190	\$1,320	Adv. RCC after sunitinib or sorafenib. Adv./meta. pancreatic NETs. Tuberous sclerosis with renal angiomyolipoma.
Revlimid (lenalidomide)	Celgene	25mg ^[2]	\$413.93	\$163.26	-61%	25mg QD 3-wks-on / 1-wk-off.	\$9,310	\$3,670	2L+ Recurring myeloma.

Source: Ministry of Human Resources and Social Security (MOHRSS); Yaozhi; BofA Merrill Lynch Global Research.

[1] Excluding 3 botanical oncology drugs; [2] Reference SKU or reference recommended dosage for monthly pricing calculation; [3] Calculation assumes an exchange rate of CN¥6.75 per US\$1; [4] Marketed as Tai Xin Sheng[®] in China.

National Drug Reimbursement List Pricing ("NDRL") Oct'18 update – 17 new drugs in oncology added to NDRL

			Unit Pricing (US\$) ^[2]		Approximate Monthly F			
Brand (generic)	Company	Dosage	Avg. Tender	Reimbursed	Δ %	Dosage ^[1]	Avg. Tender	Reimbursed	Indication coverage
Focus V [®] (anlotinib)	Sino Biopharr	n 12mg	\$127	\$70	-45%	12mg QD (2 wks-on/1-wk-off)	\$1,783	\$981	3L NSCLC
Oncaspar® (pegaspargase)	Hengrui	5ml:3750 IU	\$560	\$429	-23%	\leq 2ml every 14 days	\$1,231	\$943	1L ALL
Vidaza [®] (azacitidine)	Celgene	100mg	\$378	\$152	-60%	1 st cycle: 75mg QD for 7 days; 4wk cycle. After 2 cycles increase dose to 100mg, min of 4-6 cycles	\$14,022	\$5,636	Refractory anemia (RA) or RA with ringed sideroblasts (RARS), RA with excess blasts (RAEB / RAEB-T), and chronic myelomonocytic leukemia (CMMoL)
Inlyta [®] (axitinib)	Pfizer	5mg	\$99	\$30	-70%	5mg BID	\$5,957	\$1,787	2L Advanced renal cell carcinoma
Tagrisso [®] (osimertinib)	AstraZeneca	80mg	\$253	\$73	-71%	80mg QD	\$7,597	\$2,201	EGFR TKI refractory T790M+ NSCLC
Ninlaro [®] (ixazomib)	Takeda	4mg	\$3,234	\$710	-78%	4mg on Days 1, 8, 15 (28 day cycle)	\$12,934	\$2,839	2L Multiple myeloma
Xalkori [®] (crizotinib)	Pfizer	250mg	\$123	\$37	-70%	250mg BID	\$7,407	\$2,245	Locally adv. or meta. ALK+ or ROS1+ NSCLC
Gilotrif [®] (afatinib)	Boehringer	40mg	\$116	\$29	-75%	40mg QD	\$3,483	\$863	NSCLC with EGFR
Tasigna [®] (nilotinib)	Novartis	200mg	\$39	\$14	-65%	400mg BID	\$4,645	\$1,635	CML
Votrient [®] (pazopanib)	Novartis	200mg	\$66	\$23	-65%	800mg QD	\$7,891	\$2,348	RCC
Sutent [®] (sunitinib)	Pfizer	12.5mg	\$49	\$22	-55%	GIST & RCC: 50mg QD pNET: 37.5mg QD	\$5,544 \$4,455	\$2,498 \$2,007	RCC, GIST, pNET
Stivarga [®] (regorafenib)	Bayer	40mg	\$52	\$28	-46%	160mg QD	\$6,216	\$3,384	Meta. CRC, GIST, HCC
Zykadia [®] (certinib)	Novartis	150mg	\$108	\$28	-74%	450mg QD	\$9,699	\$2,564	NSCLC
Zelboraf [®] (vemurafenib)	Roche	240mg	\$30	\$16	-47%	960mg BID	\$7,252	\$3,868	Melanoma
Erbitux [®] (cetuximab)	Merck	100mg	\$571	\$186	-67%	400mg/m2 initial dose, 250mg weekly	\$10,446	\$3,074	Colorectal cancer, head and neck cancer
Sandostatin LAR [®] (octreotide)	Novartis	20mg	\$1,169	\$835	-29%	20mg Q4W	\$1,169	\$835	GEP-NENs
Imbruvica [®] (ibrutinib)	INI	140mg	\$78	\$27	-65%	MCL: 560mg QD CLL & WM: 420mg QD	\$9,324 \$6,993	\$3,263 \$2,447	MCL, CLL/SLL

Source: Ministry of Human Resources and Social Security (MOHRSS); Yaozhi; China Merchants Securities Research; Citi Global Research.

[1] Reference SkU or reference recommended dosage for monthly pricing calculation; [2] Calculation assumes an exchange rate of CN¥6.95 per US\$1.

HUTCHISON CHINA MEDITECH

Thank you