In-depth Analysis of the FRESCO Study: a Randomized, Double-blind, Phase III Trial Evaluating the Efficacy and Safety of Fruquintinib in Patients with 3+ Line Advanced Colorectal Cancer

Shukui QIN*, Jin LI*, Yuxian BAI, Yanhong DENG, Lei YANG, Zhen-Dong CHEN, Haijun ZHONG, Rui-Hua XU, Hongmin PAN, Weijian GUO, Yongqian SHU, Ying YUAN, Jianfeng ZHOU, Nong XU, Tianshu LIU, Dong MA, Changping WU, Ying CHENG, Jian-Ming XU, Donghui CHEN, Wei LI, Sanyuan SUN, Zhuang YU, Peiguo CAO, Lin SHEN, Haihui CHEN, Jiejun WANG, Shubin WANG, Hongbing WANG, Songhua Fan, Ye Hua, Weiguo Su

On behalf of all FRESCO Investigators

Fruquintinib:

a highly selective, potent inhibitor of VEGFR

Kinase assay	IC ₅₀ (nmol/L)	Kinase assay	IC ₅₀ (nmol/L) or Inhibition rate (%)		
BIOCHEMICAL	ACTIVITY	CELL-BASED F			
VEGFR2 (KDR) VEGFR3 (Flt4)	35 (25) 0.5	bFGF stimulated p-FGFR1 in HUVEC	>1,000		
Ret FGFR1 (Fit1)	33 128 181	VEGF-A stimulated p-VEGFR2 in HEK293	0.6 ± 0.2, n = 3		
c-kit Flt3	458 >10,000	VEGF-C stimulated p-VEGFR3 in HLEC	1.5		
PDGFRβ EGFR	>10,000 >30,000	VEGF-A dependent HUVEC proliferation	1.7		
c-MET EphB4	>10,000 >10,000 >3,000	VEGF-C dependent HLEC proliferation	4.2		
Akt	>3,000	HUVEC tube formation	94% at 300 nmol/L		
CHK1	>10,000	ANTI-ANGIOGENE			
CDK1	>10,000				
CDK2 CDK5	>10,000 >10,000	Chorioallantoic Membrane (CAM)	strong inhibition at 0.1 & 1 nmol/egg		

VECEP kinaso activity1

¹ Cancer Biol & Therapy, 15:12, 1635-1645 (2014)

 Highly selective and strong inhibition of VEGFR-1, 2, 3

High drug exposure and full target inhibition at recommended dose²

² Cancer Chemother Pharmacol 2016; 78: 259-269

Unmet clinical need of advanced CRC is urgent

CRC is a highly prevalent malignant tumor

- Globally, 1.36 million new CRC cases and 694,000 deaths each year³
- In China, 376,000 new CRC cases/year and the number is growing⁴
- ~50% of the cases will develop into metastatic or advanced CRC^{5,6}

Chemotherapies remain the cornerstone of systemic therapies for advanced CRC³

- Doublet chemotherapy regimens based on 5-Fu, OXA and CPT-11 are the 1st line and 2nd line standard chemotherapies for mCRC
- Although recommended by NCCN, bevacizumab and cetuximab are used by only 10%~30% patients in China
- Regorafenib was approved by FDA in 2014 and by CFDA in March 2017

Huge unmet clinical need

 Effective therapies after two lines of standard treatments for mCRC are quite limited⁵; most patients have a good constitution and a strong will to survive. The unmet clinical needs is huge

³ Int. J. Cancer, 136, E359-E386 (2015); ⁴ CA CANCER J CLIN 2016;66:115–132; ⁵ NCCN Guidelines. Colon cancer. v.2.2016; ⁶ Van Cutsem E et al. ESMO Guidelines 2010. 2017 CSCO ANNUAL MEETING XIAMEN, CHINA

FRESCO Study design

mCRC progressed after 2 or more lines of chemotherapy

Patients screened: 519 Patients randomized: 416

Randomized, double-blind, placebo-controlled, multi-center phase III clinical study (NCT02314819)

- Stratification factors: prior use of anti-VEGF therapies, K-Ras gene status

R

2:1

- Recruitment: Dec 2014 to May 2016
- Data cut-off: 17th Jan 2017

FRESCO study endpoints

□ Primary endpoint: overall survival (OS)

- -80% power to detect a hazard ratio (HR) of 0.7 (corresponding to a median OS improvement from 6.3 months to 9 months), 2-sided overall α =0.05
- Planned sample size: 400

□ Key secondary endpoints:

- Progression-free survival (PFS)
- Overall response rate (ORR)
- Disease control rate (DCR)
- Safety (NCI CTC 4.03)

Key inclusion criteria

- □ Aged 18-75 years
- Histologically and/or cytologically diagnosed with mCRC (Stage IV), excluding all other histological types
- Patients have failed at least 2 lines of standard chemotherapies, which must include 5-Fu, OXA and CPT-11
- Prior anti-VEGF or anti-EGFR targeted therapies are allowed, but patients with prior use of VEGFR inhibitors should be excluded
- □ ECOG PS 0-1, life expectancy \geq 3 months
- □ Measurable lesion at baseline (RECIST v1.1)
- □ Adequate organ function (bone marrow, liver and renal function etc.)
- Patients have enough understanding of this study and with signed inform consent

Baseline characteristics

E	Baseline Characteristics	Fruquintinib (N=278) n (%)	Placebo (N=138) n (%)
Ago	<65 Yea	rs 228 (82.0)	110 (79.7)
Age	≥65 Yea	rs 50 (18.0)	28 (20.3)
Sex	Ма	le 158 (56.8)	97 (70.3)
	Fema	le 120 (43.2)	41 (29.7)
Ethnicity	, Ha	an 272 (97.8)	135 (97.8)
	Not Ha	an 6 (2.2)	3 (2.2)
ECOG		0 77 (27.7)	37 (26.8)
		1 201 (72.3)	101 (73.2)

Baseline disease characteristics (1)

Disease Characteristics		Fruquintinib (N=278) n (%)	Placebo (N=138) n (%)
	Colon	147 (52.9)	70 (50.7)
Primary site of the disease	Rectal	125 (45.0)	60 (43.5)
Frinary site of the disease	Colon-Rectal	6 (2.1)	7(5.1)
	lleocecum	0	1 (0.7)
	Left	214 (77.0)	115 (83.3)
Primary location of tumor	Right	56 (20.1)	21 (15.2)
	Both or Unknown	8 (2.9)	2 (1.5)
	Wild type	157 (56.5)	74 (53.6)
K-RAS gene status	Mutant	121 (43.5)	64 (46.4)
	Single	13 (4.7)	4 (2.9)
Metastasis tumor site	Multiple	265 (95.3)	134 (97.1)
Ye		185 (66.5)	102 (73.9)
	No	93 (33.5)	36 (26.1)

CSC

Baseline disease characteristics (2)

Disease Cha	racteristics	Fruquintinib (N=278) n (%)	Placebo (N=138) n (%)
Prior use of VEGFR	Yes	84 (30.2)	41 (29.7)
inhibitor	Νο	194 (69.8)	97 (70.3)
Prior use of EGEP inhibitor	Yes	40 (14.4)	19 (13.8)
Phor use of EGFR minibitor	No	238 (85.6)	119 (86.2)
Prior targeted therapy	No anti-VEGF or anti-EGFR	167 (60.1)	83 (60.1)
(excluding VEGFR)	Anti-VEGF or anti-EGFR	111 (39.9)	55 (39.9)
Prior chemotherapies	2-3	190 (68.3)	8 (71.0)
(number of treatment lines)	>3	88 (31.7)	40 (29.0)

Overall Efficacy Analysis

Overall Survival (OS):

FRESCO successfully reached the pre-specified primary endpoint

OS sensitivity analysis

	Fruquintinib	Placebo			
Per-protocol set	9.3 months (95% CI: 8.2, 10.5)	6.8 months (95% CI: 5.9, 8.4)			
(275:130)	Stratified log-rank test P = 0.001 ; stratified HR=0.66 (95% CI: 0.52, 0.85)				
Non-stratified analysis (278:138)	9.3 months (95% CI: 8.2, 10.5) 6.6 months (95% CI: 5.9, 8.1)				
	Non-stratified log-rank test P < 0.001; Non-stratified HR=0.62 (95% CI: 0.49, 0.79)				
Analysis adjusted for covariates*	HR=0.62 (95% CI: 0.49, 0.79), P < 0.001				

¹ Stratification (stratification factors: prior use of anti-VEGF therapies, K-Ras gene status) Cox proportional hazards regression model, stepwise selection of variables that could affect the efficacy was conducted at a significance level of 0.1 and the effect of other baseline demographic characteristics and disease characteristics on OS was taken into consideration. Covariates that were included into the model were: liver metastasis (Yes vs No), time from 1st metastatic diagnosis to randomization, primary tumor site at the time of diagnosis, metastasis tumor site (multiple vs. single) and prior targeted therapy.

Progression-free Survival (PFS):

Fruquintinib significantly improved PFS compared with placebo

Tumor Response

Best response	Fruquintinib (N=278) n (%)	Placebo (N=138) n (%)
Complete Response (CR)	1 (0.4)	0
Partial Response (PR)	12 (4.3)	0
Stable Disease (SD)	160 (57.6)	17 (12.3)
Progressive Disease (PD)	87 (31.3)	98 (71.0)
Not done / not evaluated	18 (6.4)	23 (16.7)
Objective Response Rate (ORR)	13 (4.7)	0
Duration of Response (DoR, month)	>5.6 (5.6, -)	
Disease Control Rate (DCR)	173 (62.2)	17 (12.3)
Duration of Disease Control [median, (95%CI, month)	5.6 (5.6, 5.7)	3.7 (3.7, 4.8)

*ORR = CR + PR (≥8 weeks confirmed), *P*=0.012 ; DCR = CR + PR + SD (≥8 weeks after randomization), *P*<0.001

Subgroup Analysis

OS subgroup analysis-1

Subgroup	Fruquintinib	Placebo		HR (95% CI)
Overall	188/278	109/138		0.62 (0.49 – 0.79)
Age	454/000	00/440		
< 65	151/228	88/110		0.56(0.43 - 0.73)
2 65 O an dan	37/50	21/28		0.95 (0.55 – 1.63)
Gender	400/450	77/07		
	108/158	11/91		0.52(0.39 - 0.70)
	80/120	32/41		0.85 (0.57 – 1.29)
Baseline ECOG Performance Status	E 0 / 7 7	00/07		
0	50/77	28/37		0.50(0.31 - 0.79)
	138/201	81/101		0.68 (0.52 – 0.90)
Randomization				
≤ 18 Months	115/163	64/75	I	0.58(0.43 - 0.79)
> 18 Months	73/115	45/63		0.65 (0.45 – 0.94)
Number of Prior Treatment Line on or Above	Э			
Metastatic Disease				
≤ 3	146/221	86/107		0.64(0.49 - 0.83)
> 3	42/57	23/31		0.53 (0.31 – 0.90)
Previous Chemotherapy Lines				
2 or 3	126/190	80/98		0.60(0.46 - 0.80)
> 3	62/88	29/40		0.67 (0.43 – 1.05)
Prior VEGF Inhibitors				
Yes	60/84	35/41		0.68 (0.45 – 1.03)
No	128/194	74/97		0.60 (0.45 – 0.80)
Prior Use Of EGFR Inhibitors				
Yes	31/40	14/19		0.68 (0.35 – 1.30)
No	157/238	95/119		0.62 (0.48 – 0.80)
			Fovero Fruguintinih	
			ravors Fruquintinib Fravors Placebo	en e
2017 CSCO ANNUAL MEETING XIAMEN, C	HINA			

OS subgroup analysis-2

Subgroup	Fruquintinib	Placebo			HR (95% CI)
Prior Targeted Therapy					
No Anti-VEGF and No Anti-EGFR	109/167	63/83			0.63 (0.46 – 0.86)
Anti-VEGF or Anti-EGFR	79/111	46/55			0.63(0.43 - 0.90)
K-Ras Gene Status					
Wild Type	103/157	56/74			0.56 (0.40 – 0.78)
Mutant Type	85/121	53/64			0.75 (0.53 – 1.07)
Primary Tumor Šite					
Colon	98/147	55/70			0.68 (0.49 – 0.95)
Rectal	84/125	46/60			0.60 (0.41 – 0.86)
Primary Site at the					
Time of Diagnosis					
Left	141/214	91/115			0.56 (0.43 – 0.73)
Right	41/56	16/21	-		0.96 (0.53 – 1.75)
Metastasis Tumor Site					
Multiple	183/265	107/134			0.61 (0.48 – 0.78)
Liver Metastasis					
Yes	134/185	85/102			0.59 (0.45 – 0.77)
No	54/93	24/36			0.75 (0.46 – 1.21)
			Favors Fruquintinib	Favors Placebo	

0

2

PFS subgroup analysis-1

Subgroup	Fruquintinib	Placebo		HR (95% CI)
Overall	235/278	125/138		0.27 (0.21 – 0.34)
Age				
< 65	189/228	101/110		0.26 (0.20 – 0.33)
≥ 65	46/50	24/28		0.33 (0.19 – 0.56)
Gender				· · · · · · · · · · · · · · · · · · ·
Male	137/158	88/ 97	_ _	0.23 (0.17 – 0.31)
Female	98/120	37/ 41		0.32 (0.21 – 0.47)
Baseline ECOG Performance Status				
0	63/77	32/37	_ 	0.14 (0.08 – 0.24)
1	172/201	93/101	_ 	0.31 (0.24 – 0.40)
Time From 1 st Metastatic Diagnosis to Randomization				
< 18 Months	140/163	68/75		0.28(0.21 - 0.38)
> 18 Months	95/115	57/63		0.20(0.21 - 0.30) 0.24(0.17 - 0.34)
Number of Prior Treatment Line on or Above	00/110	01/00		0.24 (0.17 0.04)
Metastatic Disease				
≤ 3	185/221	99/107	- -	0.27 (0.21 – 0.35)
> 3	50/57	26/31		0.26 (0.15 – 0.45)
Previous Chemotherapy Lines				
2 or 3	160/190	91/98		0.27 (0.21 – 0.36)
> 3	75/ 88	34/ 40		0.25 (0.16 – 0.39)
Prior VEGF Inhibitors				
Yes	70/84	36/41	_ 	0.24 (0.15 – 0.38)
No	165/194	89/97		0.26 (0.20 – 0.35)
Prior Use Of EGFR Inhibitors				
Yes	36/40	16/19		0.21 (0.10 – 0.42)
No	199/238	109/119		0.27 (0.21 – 0.35)
			Favors Fruquintinib	Favors Placebo
2017 CSCO ANNUAL MEETING XIAMEN, CHI	NA		0	1 2

PFS subgroup analysis-2

Subgroup	Fruquintinib	Placebo			HR (95% CI)
Prior Targeted Therapy				1	
No Anti-VEGF and No Anti-EGFR	140/167	75/83			0.28 (0.21 – 0.37)
Anti-VEGF or Anti-EGFR	95/111	50/55			0.24 (0.16 – 0.35)
K-Ras Gene Status	400/457	05/74			
Wild Type	133/157	65/74			0.18(0.13 - 0.26)
Mutant Type	102/121	60/64			0.36 (0.26 – 0.50)
Primary Tumor Site	405/447	C 4 /7 0			
Colon	120/147	64/70 52/60			0.30(0.22 - 0.42)
Recial Primary Site at the	105/125	53/60			0.23 (0.16 - 0.33)
Time of Diagnosis				i .	
	182/214	102/115	- -		0.25(0.19 - 0.33)
Right	45/56	21/21			0.25(0.13 - 0.33) 0.25(0.14 - 0.45)
Metastasis Tumor Site	10/00	21/21			0.20 (0.11 0.10)
Multiple	225/265	122/134			0.27 (0.22 – 0.35)
Liver Metastasis					
Yes	160/185	95/102			0.22 (0.17 – 0.30)
No	75/93	30/36			0.34 (0.22 – 0.53)
			Eavors Eruquintinib	Favors Placebo	

0

2

Subgroup Analysis of Prior Use of Anti-VEGF or Anti-EGFR Therapies on Efficacy

Effect of prior targeted therapy on efficacy

		Fruquintinib (n=278)	Placebo (n=138)	HR (95%CI)
Prior targeted	No anti-VEGF or anti-EGFR	60	60	NA
therapy, %	Prior use of anti-VEGF or anti-EGFR	40	40	NA
mOS month	No anti-VEGF or anti-EGFR	10.4	6.9	0.63 (0.46, 0.86)
mos, month	Prior use of anti-VEGF or anti-EGFR	7.7	6.0	0.63 (0.43, 0.90)
	No anti-VEGF or anti-EGFR	3.8	1.8	0.28 (0.21, 0.37)
mPFS, month	Prior use of anti-VEGF or anti-EGFR	3.7	1.8	0.24 (0.16, 0.37)

In the subgroup analysis of patients with or without prior targeted therapy, OS and PFS were significantly improved by Fruquintinib, regardless of whether or not anti-VEGF or anti-EGFR had been used

Effect of prior targeted therapy on OS

Patients who never received targeted therapy (167:83): mOS of the Fruquintinib group was significantly improved (10.4m vs 6.9m; HR = 0.63)

Patients who had received prior targeted therapy (111:55): mOS of the Fruquintinib group was also significantly improved (7.7m *vs* 6.0m; HR=0.63)

CSCO 22

Effect of prior targeted therapy on PFS

For patients who never received targeted therapy (167:83), mPFS was significantly improved for the fruquintinib group (3.8m vs 1.8m, HR=0.28)

For patients who had received prior targeted therapy (111:55), mPFS was also significantly improved for the fruquintinib group (3.7m vs 1.8 m, HR=0.24)

Effect of prior use of anti-VEGF on OS

For patients who never received anti-VEGF (194:98), mOS of the fruquintinib group was significantly improved (10.4m vs 6.9m, HR=0.60) For patients who had received prior anti-VEGF (84:40), mOS of the fruquintinib group was also significantly improved (7.2m vs 5.9m, HR=0.68)

Subgroup Analysis of K-RAS Gene Status on OS

Subgroup analysis of K-RAS gene status on efficacy

		Fruquintinib (n=278)	Placebo (n=138)	HR(95%CI)
KRAS gene	KRAS WT	56.5	53.6	NA
status,%	KRAS m+	43.5	46.4	NA
mOS, month	KRAS WT	10.7	6.1	0.56 (0.40, 0.78)
	KRAS m+	8.2	7.0	0.75 (0.53, 1.07)
mPFS, month	KRAS WT	3.8	1.8	0.18 (0.13, 0.26)
	KRAS m+	3.8	1.8	0.36 (0.26, 0.50)

Fruquintinib group: In the subgroup analysis of K-RAS gene status, OS and PFS were both improved. In this study, KRAS gene status was not a prognostic factor for fruquintinib treatment

Subgroup analysis of K-RAS gene status on OS

For patients who were K-RAS WT (157:74), fruquintinib significantly improved mOS (10.7m vs 6.1m, HR=0.56) For patients who were K-RAS m+ (121:64), fruquintinib also improved mOS (8.2m vs 7.0m, HR=0.75)

Following anti-tumor treatment of the two groups

	Fruquintinib (N=278) n(%)	Placebo (N=138) n(%)
Patients with following anti-tumor treatment, n (%)	118 (42.4)	70 (50.7)
Following anti-tumor treatment types		
chemotherapy	90 (32.4)	61 (44.2)
radiotherapy	19(6.8)	6 (4.3)
surgery	13(4.7)	6 (4.3)
others	44 (15.8)	23 (16.7)
Following targeted therapy		
only VEGF/VEGFR inhibitors	30 (10.8)	22 (15.9)
only EGFR inhibitors	8 (2.9)	6 (4.3)
Concurrent VEGF/VEGFR and EGFR inhibitors	4 (1.4)	0
Other study drugs	7(2.5)	14(10.1)
2017 CSCO ANNUAL MEETING XIAMEN, CHINA		

(C)

Drug exposure (safety population)

	Fruquintinib (N=278)	Placebo (N=137)	
Drug exposure (month)			
mean (SD)	4.9 (3.97)	1.9 (1.52)	
median (min, max)	3.7 (0.1, 21.9)	1.8 (0.1, 11.1)	
Treatment cycles			
mean (SD)	5.5 (4.28)	2.2 (1.61)	
median (min, max)	4.0 (1, 24)	2.0 (1, 12)	
Dose intensity (mg)			
mean (SD)	3.5 (0.55)	3.7 (0.49)	
median (min, max)	3.70 (1.5, 5.0)	3.80 (1.5, 5.0)	
Relative dose intensity			
mean (SD)	0.92 (0.14)	0.98 (0.13)	
median (min, max)	1.0 (0.4, 1.3)	1.0 (0.4, 1.3)	

Treatment-emergent AEs Overview (safety population)

	Fruquintinib (N=278)	Placebo (N=137) n (%)	
Adverse Events (NCI CTCAE 4.03)	n (%)		
Any Grade	274 (98.6)	121 (88.3)	
Grade 3	149 (53.6)	23 (16.8)	
Grade 4	12 (4.3)	2(1.5)	
Grade 5	9 (3.2)	2(1.5)	
Grade ≥3	170 (61.1)	27 (19.7)	
SAE	43 (15.5)	8(5.8)	
Leading to			
dose interruption	98 (35.3)	14 (10.2)	
dose reduction	67 (24.1)	6(4.4)	
dose interruption or reduction	131 (47.1)	18 (13.1)	
treatment discontinuation	42 (15.1)	8 (5.8)	

Drug-related treatment-emergent AEs (safety population; occurred in >15% patients)

Adverse Events –	Fruquintinib (N=278) n (%)		Placeb	Placebo (N=137) n (%)		
	All grades	Grade 3-4	Grade 5	All grades	Grade 3-4	Grade 5
Hypertension	154 (55.4)	59 (21.2)	0	21 (15.3)	3 (2.2)	0
PPE (or HFSR)	137 (49.3)	30 (10.8)	0	4 (2.9)	0	0
Proteinuria	117 (42.1)	9 (3.2)	0	34 (24.8)	0	0
Dysphonia	100 (36.0)	0	0	2(1.5)	0	0
Weight decreased	59 (21.2)	4 (1.4)	0	12 (8.8)	0	0
Diarrhea	56 (20.1)	8 (2.9)	0	3 (2.2)	0	0
Stomatitis	47 (16.9)	1 (0.4)	0	0	0	0
Decreased appetite	45 (16.2)	3 (1.1)	0	11 (8.0)	0	0
Hypothyroidism	43 (15.5)	0	0	3 (2.2)	0	0
TSH increased	69 (24.8)	0	0	3 (2.2)	0	0
AST increased	64 (23.0)	1 (0.4)	0	14 (10.2)	1 (0.7)	0
Bilirubin increased	56 (20.1)	4 (1.4)	0	10 (7.3)	2 (1.5)	0
ALT increased	50 (18.0)	2 (0.7)	0	12(8.8)	2 (1.5)	0

FRESCO Results

The study met all pre-specified endpoints

Fruquintinib vs. placebo:

- OS: 9.30 vs. 6.57 m (HR=0.65, P<0.001)
- PFS: 3.71 vs. 1.84 m (HR=0.26, P<0.001)
- ORR: 4.7% vs. 0 (P=0.012)
- DCR: 62.2% vs. 12.3% (P<0.001)

□ All pre-specified subgroup analyses showed consistent tendency for improved OS and PFS with fruquintinib

- Significant survival benefit of fruquintinib demonstrated, regardless of whether patients received prior anti-VEGF / anti-EGFR treatment
- For patients who had not received anti-VEGF treatment, fruquintinib improved the mOS to 10.4 months; for patients who had received prior anti-VEGF treatment, fruquintinib reduced the mortality risk by 32%
- For patients who were K-RAS WT, fruquintinib improved the mOS to 10.7 months; for patients who were K-RAS m+, fruquintinib reduced the mortality risk by 25%
- □ Relatively good safety profile
 - Most frequent Grade 3 or above AEs were target-related, such as hypertension, PPE and proteinuria, and clinically manageable
 - Grade 3/4 hepatic toxicities were found similar to placebo

Conclusions

- Fruquintinib significantly improved mOS for nearly three months and mPFS for nearly two months in patients with 3rd line advanced CRC; ORR and DCR were significantly improved as well
- Overall and subgroup analyses of OS and PFS demonstrated that the efficacy of fruquintinib in patients with 3rd line advanced CRC was stable and consistent
- Fruquintinib showed a good safety profile with manageable AEs and without unexpected serious safety flags

Fruquintinib has the potential to become a standard treatment for 3rd line advanced CRC

Acknowledgements

□ We would like to thank all study participants and their families

□ We would like to thank all study centers (institutions)

We would like to thank all investigators in the FRESCO study group: Shukui QIN*, Jin LI*, Ruihua Xu, Jianming Xu, Lin Shen, Yuxian Bai, Lei Yang, Yanhong Deng, Zhendong Chen, Haijun Zhong, Hongming Pan, Weijian Guo, Yongqian Shu, Ying Yuan, Jianfeng Zhou, Nong Xu, Tianshu Liu, Dong Ma, Changping Wu, Ying Cheng, Donghui Chen, Wei Li, Sanyuan Sun, Zhuang Yu, Peiguo Cao, Haihui Chen, Jiejun Wang, Shubin Wang, Hongbing Wang et al.

*Contributed equally to this work

This trial was sponsored by Hutchison MediPharma, Shanghai, China

